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A Auxiliary Results

We start by proving properties of the induced information cost function, c.

Define Ac = {(U,Q) ∈ C : I ∗Fo (1 −Q) ≤ µ −U }. We know that for any (U,Q) ∈ Ac there exists exactly one

an at-most-binary F ∈ A that is compatible with it. We can then define, as in the text:

c(U,Q) = C(F).

Proposition OA 1. c is strictly increasing in U , strictly decreasing in Q, convex in (U,Q), and strictly convex in

the interior of C.

Proof of Proposition OA 1

Note that if F is associated with (U,Q), then:

IF(x) =


0 if x ≤ µ−U

1−Q ,

(1−Q)x+U −µ if µ−U
1−Q < x ≤ U

Q

x −µ otherwise

(1)

Strictly increasing in U . Fix (U,Q) and (U ′ ,Q) associated with F and F′ respectively, and U ′ > U . We

have:

IF′ (x)− IF(x) =



0 if x ≤ µ−U ′
1−Q ,

(1−Q)x+U −µ if µ−U ′
1−Q < x ≤ µ−U

1−Q

U ′ −U if µ−U
1−Q < x ≤ U

Q

U ′ −Qx if U
Q < x ≤ U ′

Q

0 otherwise

(2)

Notice the difference is non-negative everywhere, and strictly positive for at least some interval (as

U ′ > U ). Thus, F ⪯m.p.s. F
′ and:

c(U ′ ,Q) = C(F′) > C(F) = c(U,Q).

Decreasing in Q. Now let (U,Q), (U,Q′) be associated with F and F′ , and assume Q′ > Q. Then:
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IF′ (x)− IF(x) =



0 if x ≤ µ−U
1−Q ,

(1−Q)x+U −µ if µ−U
1−Q < x ≤ µ−U

1−Q′

(Q −Q′)x if µ−U
1−Q′ < x ≤

U
Q′

Qx −U if U
Q′ < x ≤

U
Q

0 otherwise

(3)

The expression above is always non-positive, and it is negative at least for one interval (becauseQ′ > Q).

Thus F′ ⪯m.p.s. F, and we have that c(U,Q) > c(U,Q′).

Convex. Take any (U,Q), (U ′ ,Q′) associated with F and F′ , respectively, and some λ ∈ (0,1).

Define F′′ = λF + (1−λ)F′ . F′′ ∈ A, as the mean-preserving-spread is a convex relation. Finally, define:

F̂ = F′′(µ)δEF′′ [θ|θ≤µ] + (1−F′′(µ))δEF′′ [θ|θ>µ].

Clearly, F̂ ⪯m.p.s. F
′′ , so F̂ ∈ A. Note that F̂ is also binary, so there is at least one (Û , Q̂) associated with F̂.

By definition:

Q̂ = 1− F̂(µ) = 1−F′′(µ) = 1−λF(µ)− (1−λ)F′(µ) = λQ+ (1−λ)Q′ .

Similarly:

Û =
∫ 1

µ
θdF′′(θ) = λ

∫ 1

µ
θdF(θ) + (1−λ)

∫ 1

µ
θdF′(θ) = λU + (1−λ)U ′ .

Thus: (λU + (1−λ)U ′ ,λQ+ (1−λ)Q′) is associated with F̂. To conclude convexity, notice:

λc(U,Q) + (1−λ)c(U ′ ,Q′) = λC(F) + (1−λ)C(F′) ≥ C(F′′)

≤ C(F̂) = c (λU + (1−λ)U ′ ,λQ+ (1−λ)Q′) .
(4)

The first inequality holds by convexity of C, and the second inequality holds by monotonicity of C.

Thus, c is convex. To prove strict convexity in the interior, notice that if (U,Q) and (U ′ ,Q′) are in the interior

of Ac, then F,F′ , δµ. Thus, F′′ , F̂. Because F̂ ⪯m.p.s. F
′′ , strict monotonicity of C with informativeness

implies C(F̂) < C(F′′), and the inequality above is strict.

■
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The next result shows that, at κ = 0, there exists a unique equilibrium.

Lemma OA 1. At κ = 0, there exists a unique equilibrium.

Proof of Lemma OA 1

Equilibrium is defined by the equality R0(p) = p, whenever this equality holds. It is clear that, R0(0) = αµ >

0. We prove the function g(p) = R(p)− p is decreasing, so it can cross zero at most once. For that, notice:

g(p) = α
1

1−Fo(p)

∫ 1

p
θfo(θ)dθ − p,

and consider ĝ(p) = 1
1−Fo(p)

∫ 1
p
θfo(θ)dθ − p. If ĝ is decreasing, then so is g, since ĝ gives more weight to

the increasing term. Then, using the logconcavity of fo, we can apply Theorem 6 in Bagnoli and Bergstrom

(2005) to obtain ĝ(p) is decreasing, and conclude the proof.

■

We conclude this section by proving that Proposition 1 in the main text generalizes for the case of

mutual information costs with a uniform prior, and by providing sufficient conditions on costs and priors

for demands to be rotation-ordered. Coming soon!

B Heterogeneous Consumers

In this section we extend the model to allow for consumer heterogeneity. Note that the baseline model has

no aggregate uncertainty, because we can leverage the law of large numbers to obtain the demand curve.

To keep this feature, we assume there are N groups of consumers, indexed by i ∈ {1, ...,N }, each of them

with beliefs πi ∈ ∆[0,1] about their valuation, ω. Additionally, each group faces an information cost κiCi ,

satisfying the same conditions for the information cost in the homogeneous consumer case. We assume that

the mass of group i in the population is τi , and define their initial expected valuation as µi = Eπi [ω]. Define

F∞ =
∑
i τiδµi . Note that when consumers acquire no information, F∞ is the distribution of valuations in

the economy. Similar, we let Fo =
∑
i τiπi be the distribution of valuations in the economy when consumers

acquire all possible information. Following the baseline model, Fo has mean µ, and has a log-concave,

continuously differentiable density fo. The cost for the firm of serving a consumer with willingness-to-pay

ω is, again, αω, with α ∈ (0,1).

A group-i consumer solves the problem:

max
Fi⪯m.p.s.πi

EFi [max{θ − p,0}]−κiCi(Fi) (5)
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Let Fpκi ,i solve the problem above, and define κ =


κ1
...

κN

. Then, demand is Dκ(p) =
∑
i τi

(
1−Fpκi ,i(p−)

)
,

with associated inverse demand Pκ. similarly, firm’s average costs at p are:

Rκ(p) =
∑
i

τi(1−F
p
κi ,i

(p−))∑
j τj (1−F

p
κi ,i

(p−))
EFpκi ,i

[θ|θ ≥ p] .

And we let ACκ(Q) = Rκ(Pκ(Q)). Our goal in this section is to show the following generalization of

Theorem 1 and Theorem 2 from the main text.

Theorem OA 1. Let vectors of information cost levels be 0 ≤ κ ≤ κ′ . Then:

1. Dκ(p) = 1−Fκ(p−) and Fκ ⪯m.p.s Fκ′

2. ACκ′ (Q) ≤ ACκ(Q) for all Q ∈ (0,1], with equality at Q = 1

We start with an auxiliary result. By individually applying Lemma 1 from the main text, we obtain a

simplified consumer problem for each group, depending on the pair (Ui ,Qi) of expected utility and prob-

ability of purchase. Define the set Ci and the constraints MPCi analogously to C and MPC. For simplicity,

throughout this section we assume the induced cost function over (Ui ,Qi), c, is twice differentiable.

We call the aggregate expected utility U , and the aggregate level of demand Q. That is:

∑
i

τiQi =Q
∑
i

τiUi =U. (6)

We say that aggregate quantities (U,Q) are consistent with consumer optimality if and only if there

exists a set {(Ui ,Qi)}i=1,...,N , and a price p, with (Ui ,Qi) solving the group-i problem for every i given p, and

such that (6) is satisfied.

Finally, define the aggregate cost function, which encompasses the total cost of information in the soci-

ety:

c(U,Q,κ1, ...,κN ) = min
{(Ui ,Qi )∈Ci }i=1,...,N

∑
i

τiκici(Ui ,Qi) : MPCi for all i, (6)

 ,
with the convention that C =∞ if (U,Q) cannot be achieved.

We start by showing the key result that allows for extending Theorem 2 to this environment.

Proposition OA 2. (U,Q) is consistent with consumer optimality if and only if there exists p such that it solves:

max
(U,Q)

{U − pQ − c(U,Q,κ1, ...,κN )} (7)
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Moreover, c is increasing in U , decreasing in Q and supermodular in (U,κi) for any i = 1, ...,N .

Proof of Proposition OA 2.

Consistency implies optimization. Assume (U,Q) is consistent and let {(Ui ,Qi)} and p be as in the defi-

nition. We then have:

U − pQ −
∑
i

τiκici(Ui ,Qi) =
∑
i

τi [Ui − pQi − kici(Ui ,Qi)]

=
∑
i

τi

[
max

(Ũi ,Q̃i )∈Ci∩MPCi

{
Ũi − pQ̃i −κici(Ũi , Q̃i)

}]
≥ Ũ − pQ̃ −

∑
i

τikici(Ũi , Q̃i),

for all Ũ , Q̃ compatible with individual optimization. The first equality is by definition of consistency,

and the second equality is from (Ui ,Qi) solving group-i’s problem. The inequality holds because the sum

of the maximum is larger than the maximum of the sum. This proves that consistency implies that (U,Q)

solves problem 7.

Optimization implies consistency. Let (U,Q) solve problem 7 for price p. Then, let {(Ui ,Qi)} be such

that:

∑
i

τiκici(Ui ,Qi) = c(U,Q).

For a contradiction, assume that group i strictly prefers (U ′i ,Q
′
i) ∈ Ci ∩MPCi to (Ui ,Qi). Then consider

the pair (U ′ ,Q′) such that:

∑
j,i

τjUj + τiU
′
i =U ′

∑
j,i

τjQj + τiQ
′
i =Q′ .

We have:

U − pQ − c(U,Q) =
∑
j

τj
{
Uj − pQj −κjcj (Uj ,Qj )

}
<

∑
j,i

τj
{
Uj − pQj −κjcj (Uj ,Qj )

}
+ τi

{
U ′i − pQ

′
i −κici(U

′
i ,Q

′
i)
}
≤U ′ − pQ′ − c(U ′ ,Q′),

(8)

where the first inequality follows because group i strictly benefits from (U ′i ,Q
′
i), and the last inequality

follows because the minimal cost c can only be smaller than the cost obtained by that specific distribution of

Uj and Qj . The argument above leads to a contradiction with (U,Q) solving 7, because (U ′ ,Q′) is obviously

feasible. We conclude that the optimization implies consistency.
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c is increasing in U and decreasing inQ. We prove the result for U . The proof for Q is analogous. Fix Q

and let U > U ′ , both admissible. Assume {(Ui ,Qi)} are such that:

∑
i

τiκici(Ui ,Qi) = c(U,Q).

Then, consider the following procedure: choose i = 1 and set

U ′1 = max
{
U1 +

U ′ −U
τ1

,µ1Q1

}
.

Compute U1 = τ1U
′
1 +

∑
i>1 τiUi . If U1 > U ′ , repeat the procedure with i = 2, defining

U ′2 = max
{
U2 +

U ′ −U1

τ2
,µ2Q2

}
.

Proceeding iteratively, it will eventually be the case that U i = U ′ — otherwise, U ′ <
∑
i τiµiQi , and

was not admissible to begin with. Additionally, each U ′i is individually admissible: it satisfies C by the

requirement that U ′i ≥ µiQi , and it satisfies MPCi because U ′i < Ui . Assume the procedure stops at i = j. We

then have:

c(U,Q) >
∑
i≤j

τiκici(U
′
i ,Qi) +

∑
i>j

κici(Ui ,Qi) ≥ c(U ′ ,Q).

where the inequality comes from each ci being an increasing function of the first argument and U ′i < Ui .

c is supermodular in (U,κi). For this part of the proof, we use the differentiability assumption. We prove

supermodularity by proving cU,κi ≥ 0.

Because c is defined by minimization, we can write its Lagrangian as:

∑
i

τi
{
κici(Ui ,Qi)−ψ(Ui −U )− η(Qi −Q)−φi

(
I ∗πi (1−Qi) +U − i −µi

)}
By the standard envelope theorem, we have that cU = ψ. Thus, to show supermodularity, all we have to

show is that ψ increases with κi . That is what we do next.

For fixed vector κ1, ...,κN , and fixed (U,Q), we reorder the group indexes such that MPCi does not bind

for i = 1, ...,n, and it binds otherwise. If n = N , it does not bind for any group of consumers. Let {Ui ,Qi} be

such that:

∑
i

τiκici(Ui ,Qi) = c(U,Q).

Minimizing the Lagrangian from c, the following conditions must hold, for some ψ,η and all j ≤ n:
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κjcj,U = ψ (9)

κjcj,Q = η, (10)

and

κicj,Uπ
−1
j (1−Qj ) +κicj,Q = ψπ−1

j (1−Qj ) + η, (11)

for n < j ≤ N . Additionally, for n < j ≤ N , MPCj must bind: I ∗πj (1 −Qj ) = µj −Uj . Finally, equation 6

must hold.

We want to obtain dψ
dκi

— which we simply denote by dψ henceforth. By total differentiation of 9 and

10, we obtain, for each j:

dUjdQj

 =
H−1
j

κj
·

dψ − ci,U1j=idη − ci,Q1j=i

 , (12)

where Hj is the hessian matrix of cj at (Uj ,Qj ). Proceeding in the same way with 11:

dQj =
π−1
j (1−Qj )

(
dψ − ci,U1j=i

)
+
(
dη − ci,Q1j=i

)(
v⊤H jv − (κjcj,u −ψ) 1

π′j (1−Qj )

) , (13)

where v =

π
−1
i (1−Qj )

1

. By second-order conditions, the term in the denominator is positive. Besides,

by the fact that, for n < j ≤N , MPCj holds, we have:

dUj = π−1(1−Qj )dQj (14)

Putting 9 and 10 together:

dUjdQj

 =
1(

v⊤H jv − (κjcj,u −ψ) 1
π′j (1−Qj )

)
π
−1
j

2(1−Qj ) π−1
j (1−Qj )

π−1
j (1−Qj ) 1

 ·
dψ − ci,U1j=idη − ci,Q1j=i

 (15)

Notice that, by 6,
∑
j dQj =

∑
j dUj = 0. Aggregating over 15 and 12:

00
 = A ·

dψ − ci,U1j=idη − ci,Q1j=i

 , (16)

where A is the sum of positive definite matrices, from the conditions in 12, and positive semidefinite
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matrices from the conditions in 12, and is, therefore, positive definite. We can then conclude:

dψ = ci,U > 0.

We have then proved that c is supermodular. ■

Proof of Theorem OA 1

Demand Rotations. Let Vi,κi be the value function for group i’s problem. Under the smoothness of c,

Vi,κi is continuous on [0,1] and differentiable. When p = 0, it is clear that one obtains no information and

purchases the good with probability one, achieving the highest possible utility, Vi,κi (0) = µ. Similarly, at

p = 1 it is dominant not to acquire any information and purchase the good with probability 0, achieving

Vi,κi (1) = 0.

By the envelope theorem:

Vi,κi (p) = Vi,κi (0) −
∫ p

0

(
1−Fνi,κi (ν)

)
dν (17)

By convexity of Vi,κi , it must be that Fnui,κi (ν) is a decreasing function of ν. By the argument of no

information acquired for p ∈ {0,1}, Dκ(0) = 1 and Dκ(1) = 0. Smoothness of information costs implies

Fnui,κi (ν) is continuous. Now, Dκ(p) =
∑
i τi(1−F

p
i,κi

(p), so Dκ is a complementary CDF.

For the second assertion, note that, because at p = 0 no information is acquired, Vi,κi (0) = Vi,κ′i (0).

Similarly, Vi,κi = Vi,κ′i (1) = 0. Then, applying 17, we have for p ∈ [0,1]:

0 ≤
∑
i

τiVi,κ′i (p)−
∑
i

τiVi,κi (p) =
∫ p

0
Dκ(ν)dν −

∫ p

0
Dκ′ (ν)dν

where the inequality stems from the problems being identical except for a higher information cost for

each group. Because Dκ is an inverse CDF, these inequalities imply that 1 −Dκ′ second-order stochasti-

cally dominates 1 −Dκ. The equality of value functions at p ∈ {0,1} further implies the mean-preserving

contraction relation.

Cost Rotations. Fix someQ ∈ [0,1]. Let (U,Q) and (U ′ ,Q′) be the aggregate quantities for (κ,p) and (κ′ ,p′)

respectively. Consider the vector k1 = {k′1, k2, ..., kN }, and let (U1,Q) be compatible with κ1. By Proposition

OA 2, there exists some p1 such that (U1,Q) solves 7. Because of the supermodularity of c in Proposition

OA 2, that optimization is submodular in (k1,U ), and, by Topki’s Lemma, U1 ≤U .

Now, form > 1, define (Um,Q) as the aggregate quantity compatible with κm = {κ′1,κ
′
2, ...,κ

′
m,κm+1, ...,κN }.
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Then, by the same argument, defining: κm+1 = {κ′1,κ
′
2, ...,κ

′
m+1,κm+2, ...,κN }, we obtain Um+1 ≤Um. Because

UN =U ′ , we have U ′ ≤U .

Finally, notice that, for any vector κ,

ACκ(Q) =
∑
i τiUi
Q

=
U
Q
,

to conclude the result. ■

C General Firms’ Costs

In this section we extend the baseline model to accommodate more general firms’ costs. That requires a

restriction on the set of information cost functions. Formally, we allow firms’ costs to be any increasing and

continuous function χ : [0,1]→ [0,1]. Because consumers’ utilities are still linear, they need only to keep

track of their distribution of posterior means. However, the analysis now depends on the whole distribution

of posteriors held by consumers, rather than posterior means, because firms’ costs are no longer linear in

consumers’ beliefs. Thus, we need to define information costs appropriately. Note that Proposition 2 in the

main text is already proved to encompass this case. Thus, the goal of this section is to generalize Theorem

1 and Theorem 2.

To make the problem tractable, we discretize the state space. Let Ω = {ω1, ...,ωN } ⊂ [0,1] be this dis-

cretized space, and we will denote π probability vectors over Ω with π =


π1
...

pN

,
∑
i πi = 1, and πi ≥ 0. Prior

information is given by Fo ∈ ∆Ω with fo =


fo,1
...

fo,N

. Signals induce distributions over posteriors, which we

denote by τ ∈ ∆∆Ω. Moreover, it is well known that a distribution over posteriors τ is induced by a signal

if and only if:

Eτ [π] = fo

Our key assumption about information costs is:

Assumption OA 1. The information cost function I : ∆∆Ω→ R+ satisfies:

1. Posterior-separability: I(τ) = Eτ [H(π)], with H bounded, strictly convex, and H(fo) = 0;

2. State-separability: H(π) =
∑
i
(
h(πi)− h(fo,i)

)
;
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3. Smoothness: h is twice continuously differentiable.

The crucial addition over what is assumed in the literature is state-separability. Note that both quadratic

costs and mutual information satisfy these assumptions.

Consumers solve:

max
τ :Eτ [π]=fo

Eτ [max{Eπ[ω]− p,0} −κH(π)] .

Let τpκ solve the consumer’s problem for price p. Then, demand satisfies Dκ(p) = τ
p
κ ({π : Eπ[ω] ≥ p}).

Inverse demand Pκ is defined in the usual way. Finally, average costs can be written as:

Rκ(p) = Eτpκ
[
Eπ [χ (ω)]

∣∣∣Eπ[ω] ≥ p
]
.

As usual, ACκ(Q) = Rκ(Pκ(Q)).

Theorem OA 2. Let Assumption OA 1 hold, and information levels be 0 ≤ κ ≤ κ′ . Then:

1. Dκ(p) = 1−Fκ(p−) and Fκ ⪯m.p.s Fκ′

2. ACκ′ (Q) ≤ ACκ(Q) for all Q ∈ (0,1], with equality at Q = 1

To prove this result, we depend on a key comparative statics result. We say τ is binary if |suppτ | = 2.

In that case, we say (Q,θH ) ∈ A(τ) if suppτ = {πL,πH }, θi =
∑
iωiπ

i , for i ∈ {L,H} and θH > θL, and Q = τH .

Note that, from the consumers’ perspective, (Q,θH ) summarizes all the payoff-relevant information about

τ . Because of that, the key variable in this section is the cheapest distribution over posteriors τ that induces

a given pair (Q,θH ). Formally:

τ(Q,θH ) ∈ argmin
τ
{I(τ) : (Q,θH ) ∈ A(τ) and Eτ [π] = fo} (18)

Finally, for f ,g ∈ ∆Ω, let f ⪯1 g denote that g first order stochastically dominates f .

Proposition OA 3. Problem 18 has a unique and at-most binary solution. Let (Q,θH ) and (Q,θ′H ) be such that

θH > θ
′
H . Then, πH ⪯1 π

′
H .

Proof of Proposition OA 3

Existence, Uniqueness and at-most Binary. Existence is trivial. Because H is strictly convex, I is strictly

increasing in the mean-preserving spread order in τ . Thus, following a similar argument to the proof of

Lemma 1 in the main appendix proves the optimal τ is unique and at-most binary.
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Rewriting the problem. Let’s start by rewriting the optimization problem in 18 as:

min
πH

QH(πH ) + (1−Q)H
(
fo −QπH

1−Q

)
:

s.t.
∑
i

πHi = 1 (1a)

∑
i

ωiπ
H
i = θH (1b)

0 ≤ πHi ≤
fo,i
Q

for all i = 1, ...,N . (1c)

To construct this objective, we have simply used the fact that τ can be substituted by Q or 1−Q, solved

for πL in the Bayesian consistency constraint, rewritten as: fo = QπH + (1 −Q)πL. (1a) constraints πH to

integrate to one, (1b) makes sure the average of πH is θH , and (1c) translates the requirement that both πH

and πL are non-negative.

Showing First-Order Stochastic Dominance. Let γ be a multiplier associated with (1a), λ associated with

(1b), νi ,βi associated to the non-positivity constraint and the upper bound constraint, respectively. Then,

first-order conditions imply:

Q

h′(πHi )− h′
 fo,i −QπHi1−Q

 = γ +λωi + νi − βi

Because H is convex, h is convex and, thus h′ is increasing. As a consequence, the left hand side above

is increasing in πHi . Thus, we can define ℓ(·), increasing, to obtain:

πHi = ℓ (γ +λωi + νi − βi)

We can then write:

πHi =


0 if ℓ (γ +λωi) < 0,

ℓ (γ +λωi) if 0 ≤ ℓ (γ +λωi) ≤
fo,i

1−Q ,

fo,i
1−Q otherwise.

(19)

We finish by proving this implies first order stochastic dominance. Let (γ ′ ,λ′) be associated with the

solution to (Q,θ′H ), and (γ,λ) to the solution to (Q,θH ), with θ′H > θH . We let πH and π′H be defined by the

optimization, ℓi = ℓ (γ +λωi) and ℓ′i = ℓ (γ ′ +λ′ωi). Because ℓ is increasing:
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ℓi > ℓ
′
i ⇐⇒ γ +λωi > γ

′ +λ′ωi .

The remainder of the proof consists of ruling out cases for (γ,λ) and (γ ′ ,λ′).

We start ruling out (γ ′ ,λ′) > (γ,λ) or (γ,λ) > (γ ′ ,λ′). Assume (γ ′ ,λ′) > (γ,λ). But that implies ℓi < ℓ′i for

all i and thus πHi ≤ π
′H
i for all i. If they are equal, we have a contradiction with θH < θ′H . Otherwise, we

must have:

1 =
∑
i

πHi <
∑
i

π′Hi = 1,

which is a contradiction. We can rule out (γ,λ) > (γ ′ ,λ′) with the symmetric argument.

We now rule out γ ′ > γ , λ′ < λ. Assume that was the case. Because ℓ is increasing, there exists exactly 1

ω̂ such that ℓi < ℓ′i for all ω < ω̂. Notice this implies:

πHi < π
′H
i =⇒ ω < ω̂.

Because πH and π′H are probabilities, the equation above implies π′H ⪯1 π
H . But that contradicts

θ′H > θH .

Thus, it must be the case that γ ′ ≤ γ , λ′ ≥ λ, with at least one of the inequalities strict. But by the

argument above, this implies πH ⪯1 π
′H , as we wanted to prove. ■.

Proof of Theorem OA 2

Demand Rotations. For the first part, define, for any F ∈ ∆[0,1]:

C(F) = min
τ
{I(τ) : Eτ [π] = fo,F(θ) = τ ({π : Eπ[ω] ≤ θ})}

C is clearly well-defined, and the minimum is achieved. By Berge’s Maximum theorem, C(F) is lower-

semicontinuous. Because I is strictly increasing in informativeness, C is naturally strictly increasing in

informativeness. Additionally, let F = δµ. Then, if τ is in the constraint set, τ = δfo . Thus, C(δµ) = I(δfo ) =

H(fo) = 0.

Finally, let F,F′ ∈ ∆[0,1] and λ ∈ (0,1), and τ and τ ′ attain the cost minimization for F and F′ respec-

tively. Then:
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λC(F) + (1−λ)C(F′) = λI(τ) + (1−λ)I(τ ′) = I (λτ + (1−λ)τ ′)

≥ C (λF + (1−λ)F′) ,
(20)

where the second equality uses linearity of I and the inequality follows from the fact that the constraint

set in the minimization above is convex. Thus, C is a convex function.

We have then concluded that C satisfies all the conditions in the main text. It is straightforward to see

that the consumers’ problem is equivalent to:

max
F∈A

EF[max{θ − p,0}]−κC(F).

Thus, the proof of Theorem 1 carries over to this problem.

Cost Rotations. Following the proof of Theorem 2, we obtain that if (U,Q) solves the consumer’s problem

for some (p,κ) and (U ′ ,Q) solves the consumer’s problem for (p′ ,κ′), with κ′ > κ, then U ′ ≤ U . Let τ

and τ ′ be the respective distributions over posteriors that solve the cost minimization problem. We have

suppτ = {πL,πH }, and suppτ ′ = {π′L,π′H }.

By definition:

∑
i

ωiπ
H =

U
Q
≥ U

′

Q
=

∑
i

ωiπ
′H .

Therefore, by Proposition OA 3, π′H ⪯1 π
H . To conclude, note that:

ACκ(Q) = EπH [χ(ω)] ≤ Eπ′H [χ(ω)] = ACκ′ (Q), (21)

where the inequality follows from π′H ⪯1 π
H and χ strictly increasing. We have thus proved the cost

rotation result. ■

Testing with Arbitrary Firm’s Costs

We now propose a test to identify and quantify endogenous information under arbitrary — but known —

firms’ costs χ. The test does not maintain the same intuition as Proposition 3 in the main text, but it is

formally very similar: it consists on using observable data to identify consumer’s information expenses.

To obtain the test, we assume that the researcher can observe individual-level data on insurer’s cost, for

all possible prices p. Formally, the researcher observes, in addition to the demand curve, a distribution of

individual costs for each price, with CDF G(·;p). Thus, the set of observables is O = {D,G}. For simplicity,
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we assume D is continuous and strictly decreasing, and G(·;p) is continuous for all p.

The researcher is interested in distinguishing between two settings. On one hand, information may

be exogenous, which implies the existence of a distribution of valuations in the economy, τo ∈ ∆∆Ω that

sustains the observations. On the other, information might be endogenous, in which case there is an infor-

mation cost, I , and a prior Fo, that generate the data.

Define the following expression, which is a function of the observables alone. For all prices p, with

Q =D(p), let:

T (p) =
∫ 1

p
D(z)dz −Q

∫ 1

0
G (χ(z);p)dz+ (1− p)Q.

Our next result finds a necessary condition for the dataset to be consistent with exogenous or endoge-

nous information. In the latter case, it also quantifies the amount of endogenous information acquisition.

Proposition OA 4. The following results hold:

1. Observables O are consistent with exogenous information if and only if T (p) = 0 for all p;

2. Let observables O be consistent with endogenous information acquisition. Then, for all prices p such that

D(p) ∈ (0,1):

T (p) = I(τp) > 0.

Proof of Proposition OA 4

Consistency with Exogenous Information Under exogenous information, it is without loss of generality

to consider suppτo = {πθ}θ∈[0,1], where Eπθ [ω] = θ. We will then abuse notation and write τo(θ) for the

probability of posteriors with mean below θ, that is, τo(θ) = τo{πm :m ≤ θ}. Furthermore, we denote by Πθ

the CDF of πθ , for all θ ∈ [0,1].

Assume observables are consistent with endogenous information, and fix any p. Then, it must be that

τo satisfies D(p) = 1− τo(p). Moreover:

G(x;p) = P r{χ(ω) ≤ x|p} = P r{ω ≤ χ−1(x)|p} =

∫
θ≥p

(
Πθ ◦χ−1(x)

)
dτo(θ)

1− τo(p)
. (22)

Let U (p) be consumer’s utility at price p when information is τo. Clearly, U (1) = 0. Then, by Roy’s

Lemma:
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U (1)−U (p) =
∫ 1

p
(1− τo(z))dz,

and by using the definition of consumer’s utility:∫ 1

p
D(z)dz =

∫ 1

p
(1− τo(z))dz =U (1)−U (p) =

−
∫ 1

p

∫ 1

0
ωdΠθ(ω)dτo(θ) + pQ = −Q+

∫ 1

p

∫ 1

0
Πθ(z)dzdτo(θ) + pQ

= (1− τo(p))
∫ 1

0
G(χ(z);p)dz − (1− p)Q =Q

∫ 1

0
G(χ(z);p)dz − (1− p)Q,

(23)

where the first equality comes from the consistency of demand for all prices, the third equality follows

by integration by parts, and the fourth equality is a consequence of equation 22. By reorganizing the

expression, we obtain T (p) = 0.

Consistencywith Endogenous Information. Recall that, under endogenous information, consumers choose

a distribution of posteriors τp for all p, and let πp ∈ suppτp be the unique belief under which consumers

buy the product. Again, denote by Πp the CDF associated with πp. In this case, consistency of demand

implies: D(p) = τp{πp}. Note that the distribution of costs must satisfy:

Gp(x) = P r{χ(ω) ≤ x|p} = P r{ω ≤ χ−1(x)|p} = Πp ◦χ−1(x).

Let V (p) represent consumers’ indirect utility at price p. As proved in in the main text — which is not

affected by firm’s costs — V (1)−V (p) =
∫ 1
p
D(z)dz. By using the definition of consumers’ indirect utility:

∫ 1

p
D(z)dz =

∫ 1

p
τz{πz}dz = V (1)−V (p) =

−Q{πp}
∫ 1

0
ωdΠp(ω) + pQ+ I(τp) = −Q+Q

∫ 1

0
Πp(z)dz+ pQ+ I(τp)

=Q
∫ 1

0
G(χ(z);p)dz − (1− p)Q+ I(τp),

(24)

Again, reorganizing we obtain T (p) = I(τp). It is clear, once more, that consumers acquire no informa-

tion if and only if D(p) ∈ {0,1}, thus T (p) = I(τp) > 0 if D(p) ∈ (0,1).

■

Section Coming Soon!
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D The Highest Equilibrium

In this appendix we show the highest equilibrium of the trading game — that is, the equilibrium with the

highest price — is the only one that is not trivial. Formally, we prove it is the sole equilibrium that can be

attained by standard undercutting arguments. We thus propose a refinement that allows us to formalize

this notion. Intuitively, we discretize the decision set of firms, show that there the equilibrium is unique,

and then show the limit of such equilibria is the highest equilibrium.

Let our trading game, Γ , be defined by a prior, Fo; information costs; C, an action set for strategy sets of

consumers: Ac =A×∆[0,1][0,1], where (F,a) ∈ Ac implies F is an information structure, and a is a function

of signal realizations in [0,1] to a distribution over purchasing (1) or not purchasing (0); finally, the action

set of firms is Af = [0,1], any price between 0 and 1.1 That is, Γ =
{
Fo,C,Ac,Af

}
. Recall that E is the set of

SPNE price-quantity pairs of Γ , where (pe,Qe) is the equilibrium pair with the highest prices. Let Ep denote

the set of equilibrium prices.

For each integer N > 0, we consider the sequence of games ΓN =
{
Fo,C,Ac,A

N
f

}
, where ANf = Ēp ∩

{mN }m∈[N ], with [N ] = {0,1, ...,N }. In words, we are considering a grid of price choices that excludes equilib-

rium prices. Let EN be the set of Subgame Perfect Nash Equilibria of this game.

Proposition OA 5. Fix a base game Γ . For N large enough, EN is a singleton. Moreover, let (pN ,QN ) be the

largest equilibrium prices and quantities of this game. Then (pN ,QN )→ (pe,Qe).

Proof of Proposition OA 5.

Note that Rκ is still defined in the same way as in the original text, so the only change is in the first stage,

where firms choose prices.

First, notice that any equilibrium in which at least one firm makes positive profits must be symmetric.

Otherwise, the firm with the highest prices have incentives to deviate to the price of the other firm and

share their customer base, making positive profits.

Second, some firm must make profits in equilibrium. To see that, assume the firms make zero profits

at price p. That implies pe < p. Indeed, if p ≤ pe and generates zero profits, it is an equilibrium price, and

it is thus excluded from the grid. However, if pe < p, and N is large enough, there exists p′ ∈ ANf ∩ (pe,p)

such that one firm can deviate to p′ , attract all consumers, and make positive profits. Thus, it is impossible

firms make zero profits in equilibrium. This and the previous paragraph proves that, for large enough N ,

equilibrium is symmetric and both firms make positive profits.

1Evidently, allowing firms to charge other prices does not change anything.
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Then, consider a price posted by both firms (p,Q), with p ∈ ANf . Assume p − 1
N is such that Rκ

(
p − 1

N

)
<

p− 1
N . One of the firms must be making less than half of the profits, regardless of how the customer base is

shared. Then, for high enough N , and by continuity of Rκ and Dκ:

1
2
Dκ(p)(p −Rκ(p)) < Dκ

(
p − 1

N

)(
p − 1

N
−Rκ

(
p − 1

N

))
So that if p is an equilibrium price, then p − 1

N does not generate profits. Define S = {p ∈ ANf : p − 1
N ∈

ANf ,Rκ
(
p − 1

N

)
≥ p − 1

N }.

Let ⌊pe⌋N = min{p ∈ ANf : p ≥ pe}. We conclude by proving this is the unique equilibrium price for high

enough N . First, notice ⌊pe⌋N ∈ S, because either ⌊pe⌋N − 1
N < pe, and thus cannot have positive profits, or

⌊pe⌋N − 1
N < pe , ANf . Similarly, for p < pe, profits are strictly negative, so they cannot be equilibrium. Now,

we just need to prove any p > ⌊pe⌋N with p ∈ S can be ruled out. If pe = maxS, we are done. So assume that

is not the case. Let pN = min{p ∈ S : p > ⌊pe⌋}, and define πN = maxp∈[⌊pe⌋N ,pN )∩ANf
Dκ(p)(p −Rκ(p)). Notice

that πN is bounded away from zero, as it converges to the highest profits between pe and the next point of

zero profits.

Now, consider p ∈ S, with p > ⌊pe⌋N . Because p− 1
N < 0, and profits are continuous, whenN is sufficiently

large, the profits obtained at p are close to zero, whereas πN is bounded away from zero. Moreover, it is

clear that pN < p. Thus, deviating for pN will attract all consumers and increase profits. Thus, for large

enough N , p cannot be an equilibrium. We then conclude ⌊pe⌋N is the only equilibrium candidate.

To prove ⌊pe⌋N is an equilibrium, notice that any deviation to a lower p in the grid generates negative

profits, and to a higher p loses all customer. This proves that, for large enough N , ⌊pe⌋N is the unique

equilibrium. It is trivial to see that ⌊pe⌋N → pe, concluding the proof. ■
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