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Abstract

We study asymptotic learning when the decision-maker is ambiguous about

the precision of her information sources. She aims to estimate a state and eval-

uates outcomes according to the worst-case scenario. Under prior-by-prior

updating, ambiguity regarding information sources induces ambiguity about

the state. We show this induced ambiguity does not vanish even as the num-

ber of information sources grows indefinitely, and characterize the limit set

of posteriors. The decision-maker’s asymptotic estimate of the state is generi-

cally incorrect. We consider several applications. Among them we show that

a small amount of ambiguity can exacerbate the effect of model misspecifi-

cation on learning, and analyze a setting in which the decision-maker learns

from observing others’ actions.
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1 Introduction
Consider an agent who relies on multiple information sources to learn a payoff-

relevant state. A voter may depend on poll results and advertising to find out

a politician’s competence and agenda, and an investor uses reports of different

analysts to forecast the future returns of a stock. A common assumption in the

literature is that the decision-maker has beliefs about the quality of their informa-

tion sources, and that these beliefs are correctly specified. In such cases, asymp-

totic learning is successful. Although these assumptions are reasonable, in many

settings, forming beliefs might not be straightforward. For example, consider a

prospective customer consulting online reviews before making a purchase deci-

sion. She may not have particular beliefs about the quality of each reviewer, be-

cause they are being consulted for the first time. Such settings are widespread, yet

little is known about learning in these environments. This paper addresses this

gap.

We analyze asymptotic learning when the decision-maker lacks particular be-

liefs about her information sources. We study a decision-maker who estimates

a state by minimizing a loss function. She observes monotonic transformations

of multiple unbiased signals. The state and the signals are jointly normally dis-

tributed, but the decision-maker does not know the signals’ precisions, that is,

the inverse of their variances. The decision-maker is not probabilistically sophis-

ticated; instead, she is ambiguous regarding the precision of each information

source, and perceives them to lie in a bounded interval. Each assignment of pre-

cisions to information sources pins down a belief of the decision-maker, a joint

distribution over signals, and the state. Thus, an interval of perceived precisions

induces a set of beliefs. We assume the decision-maker updates her beliefs prior-

by-prior. That is, upon observing information, she updates each belief according

to Bayes’ rule, obtaining a posterior about the state. In doing so, ambiguity about

precisions induces ambiguity about the state, in that the agent considers multiple

posteriors. Finally, she takes a robust approach and evaluates the expected loss

according to the worst case across all posteriors.

This setup encompasses a broad range of environments. By modeling observ-

ables as monotonic transformations of signals, we cover cases in which the decision-
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maker may observe unbiased signals directly, the actions of other agents, and many

other possibilities. Furthermore, our assumptions on both distributions and am-

biguity attitudes are for the sake of tractability. Our main insights go through in

much more general settings.1

Our first result shows the induced ambiguity over the state does not vanish

asymptotically. That is, the posterior beliefs of the decision-maker do not con-

verge to the same distribution as the number of information sources grows. We

characterize this asymptotic set of posteriors. As in standard Bayesian learning,

the variance of each posterior converges to zero. However, different beliefs lead to

different weighting of signals, and consequently to different posterior means. For

example, for any realization of signals, the agent’s belief set contains a belief that

assigns higher precisions to signals with high realizations and lower precisions

otherwise. In this case, the posterior mean converges to a relatively high value.

Similarly, there is a belief that leads to a relatively low posterior mean. Consider-

ing the set of all agent’s beliefs generates an interval of posterior means. The set of

asymptotic posteriors is the set of Dirac measures over that interval. Importantly,

this set is independent of the objective of the decision-maker.

Our second result characterizes the decision-maker’s asymptotic estimate of

the state. Her decision problem can be interpreted as a zero-sum game against na-

ture. First, the decision-maker receives information and chooses the estimate that

minimizes her expected loss. Afterwards, nature chooses the precision of each

source with the aim of maximizing the agent’s loss. In doing so, nature affects

the agent’s posterior distribution. We show that, asymptotically, this is equiva-

lent to nature choosing posterior means in the interval described in the previous

paragraph. If the agent chooses a relatively low value within the interval, nature

will maximize her loss by choosing the highest value possible, and vice versa. To

minimize the maximal loss, the agent chooses an estimate that makes nature indif-

ferent between choosing the highest or the lowest value in the interval of posterior

means.

We show that, in our setting, asymptotic learning typically fails. That is, the

agent’s estimate is not consistent. Thus, we complement the vast literature on

1See Section 6 for a detailed discussion of these extensions.
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model misspecification, which obtains similar results by assuming the true pa-

rameter values are not in the support of the decision-maker’s prior distribution.

By contrast, we maintain the assumption that the true precisions are in the set of

beliefs the agent deems possible. In fact, we show the agent’s estimate is typically

inconsistent even in cases in which a misspecified Bayesian decision-maker would

learn the truth.

These results have several implications. First, we show that disagreement in es-

timation can prevail despite of agreement on asymptotic beliefs. Concretely, with

abundant information agents with the same prior beliefs will have the same set of

asymptotic posteriors; however, they may have different asymptotic estimates if

they have different loss functions. Note that a Bayesian decision-maker’s posterior

belief converges to a Dirac measure. Regardless of the loss function, her estimate

will be equal to this value. Thus, ambiguity about the precision of information

sources might rationalize disagreement even between informed experts who aim

to find out the truth: for example, scientists with access to the same large dataset.

Second, we argue a small amount of ambiguity can significantly amplify the

effect of model misspecification. Concretely, assume the agent observes the unbi-

ased signals directly. In that case, a Bayesian decision-maker estimates the state

correctly even when she holds misspecified beliefs about the precision of infor-

mation sources. By contrast, we show that for any amount of prior ambiguity,

however small, misspecified agents exist who, when facing this ambiguity, experi-

ence arbitrarily large losses and estimation errors. Thus, the interaction between

ambiguity and model misspecification might prove to be a fruitful direction for

future research.

Third, we show the decision-maker can be worse off even if she perceives all

of her information sources as more informative. Consider two decision problems,

a and b, in which the agent directly observes unbiased signals but has different

intervals of perceived precision. We show that even if the lowest precision in a
is higher than the highest precision in b, the decision-maker may be better off
under b. To carry out this comparison, we study how the initial ambiguity on

precisions maps into induced ambiguity on the state. In particular, we show that

the interval of posterior means is determined by the ratio between the highest
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and lowest possible perceived precisions. Because the length of this interval pins

down the agent’s loss, her welfare is monotonic in this ratio, regardless of the level

of perceived precisions.

Last, we consider an application whereby the decision-maker learns from oth-

ers’ actions, instead of observing signals directly. An ambiguity-averse econome-

trician observes choices by Bayesian decision-makers who attempt to estimate a

payoff-relevant state given their private information. She aims to estimate this

state but does not know the precision of their private signals. For a concrete exam-

ple, consider a healthcare official assessing the prevalence of a disease in a region.

She relies on hospital reports to do so, but is not sure about the quality of their data

collection protocols. We show the econometrician generically fails to aggregate in-

formation. We characterize how she may over- or underreact to the information

contained in the observed actions, as a function of her prior beliefs and the true

level of precisions.

Related Literature Our paper follows the literature on learning under ambigu-

ity. Epstein and Schneider (2007) introduce a framework where an agent seeking

to learn the state of the world, lacks confidence in their information about the

environment. They consider the MaxMin Expected Utility model (MEU) follow-

ing Gilboa and Schmeidler (1989) and a general updating rule for ambiguity that

encompasses both prior-by-prior (full Bayesian) updating (Pires, 2002) and maxi-

mum likelihood updating (Gilboa and Schmeidler, 1993). Epstein and Schneider

(2008) study an application to a financial market where the representative agent

observes one signal with ambiguous precision, and updates her beliefs prior by

prior. They show how this ambiguity affects reactions to information and the as-

set price. Follow-up papers extend these results by incorporating ambiguity on

the mean of the signals, and by considering equilibrium portfolio choices as well

as general utility functions (Illeditsch, 2011; Gollier, 2011; Condie and Ganguli,

2017). In this paper, we consider a similar setup as Epstein and Schneider (2008)

but focus on whether ambiguity vanishes, and whether the agent can estimate the

state correctly, when the number of signals she observes goes to infinity. 2

2Al-Najjar (2009) show that individuals who use frequentist models might compensate for the
scarcity of data by limiting inference to a statistically simple family of events, which leads to sta-
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Of relevance is also the literature on single-agent misspecified learning, which

is another possible driving force for the failure of asymptotic learning. In this lit-

erature, a misspecified agent typically has a prior that assigns probability 0 to (a

neighborhood of) the true model. Berk (1966) and Shalizi (2009) show that with

exogenous information, under mild conditions, the agent’s beliefs converge, al-

though not to the true state. Other works focused on settings where the signals can

be affected by the actions of the agent and are hence endogenous. Nyarko (1991)

and Fudenberg et al. (2017) provide examples in which the convergence of beliefs

fails. Similar to our setup, Heidhues et al. (2019) consider the convergence of be-

liefs and actions with a Gaussian prior and signals. Frick et al. (2020b), Esponda

et al. (2019), and Fudenberg et al. (2020) focus on the convergence results in gen-

eral models with finite actions. Our paper differs from the existing work in three

ways. First, the agent in the misspecified learning literature is a Bayesian learner,

whereas in our setup, the decision-maker holds multiple beliefs and adopts prior-

by-prior updating. Second, the decision-maker in our model is not misspecified in

the sense that the true model is contained in her set of priors. Third, we show that

in our setting, even when information is exogenous, as in Berk (1966) and Shalizi

(2009), the belief set diverges almost surely.

Our paper also relates to the robust statistics literature (Huber, 2004). Roughly

speaking, robust statistics are statistics that produce good performance even with

deviations from assumptions on the data generation process. Cerreia-Vioglio et al.

(2013) highlight the close relation between decision making under ambiguity, akin

to the approach in this paper, and robust statistics, and characterize conditions un-

der which the two approaches are equivalent. However, the problems studied in

the robust statistics literature typically differ from the one studied in this paper.

For instance, Giacomini and Kitagawa (2020) and Giacomini et al. (2019) propose

new tools for Bayesian inference in set-identified models to reconcile the asymp-

totic disagreement between Bayesian and frequentist inferences.3 By contrast, our

focus is on whether information aggregation is successful as the number of sources

tistically ambiguous beliefs. In their setting, such ambiguity vanishes in standard continuous out-
come spaces as data increases without bound.

3There are also recent papers on misspecified social learning such as Bohren (2016), Bohren and
Hauser (2019), Bohren and Hauser (2021), Frick et al. (2020a) and Frick et al. (2021).
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grows without bound. Even in cases of point-identified models, ambiguity does

not vanish in our setup because the precisions of different information sources are

allowed to be different. Finally, this result is in contrast to Marinacci (2002), where

ambiguity vanishes because all observations are drawn from the same ambiguous

distribution.

Acemoglu et al. (2016) and Andreoni and Mylovanov (2012) show that dis-

agreement in beliefs may prevail asymptotically despite exposure to identical in-

formation, which naturally leads to different asymptotic estimates of the state. By

comparison, we show that in our setup although asymptotic beliefs are identical

for agents with different loss functions, there can still be difference in asymptotic

estimates.

2 Setup
A decision-maker aims to learn the state of the world, θ ∈Θ := R, and has access to

N information sources. Denote the set of information sources as I =: {1, ...,N }. The

prior distribution P0 of the state θ is a normal distribution N
(
µ, 1

ρµ

)
, where ρµ > 0

is the inverse of the variance. We call ρµ the precision of the prior. The prior is

common knowledge among the decision-maker and all information sources. Each

information source i ∈ I features a signal si = θ + εi , where the noise εi is normally

distributed with mean 0 and precision ρi > 0, that is, εi ∼ N
(
0, 1
ρi

)
.4 We assume

that the state and all noises are independent from each other given precisions.

We further assume the actual precisions of information sources to be drawn

i.i.d. from some distribution function G on [ρ,ρ] with ρ > ρ > 0. The decision-

maker in our model is ambiguous about the precisions of her information sources.

In particular, she knows that the precision of each information source lies in [ρ,ρ],

but she cannot form a probabilistic belief about it. The decision-maker can form

conjectures about the precision of any information source i. We denote the decision-

maker’s conjectured precision as ρ̂i ∈ [ρ,ρ]. Finally, note the decision-maker is not

misspecified, because she does not deem the actual precisions as impossible ex

4Our framework is suitable for analyzing biased signals as well. However, in that setup issues
of identifiability arise, which are not the focus of this paper. When these issues do not arise, our
main insights remain unchanged.
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ante. This observation follows from the assumption that the actual precision ρi of

information source i lies in the perceived precision set [ρ,ρ].

As mentioned in the introduction, the decision-maker might be unable to ob-

serve the realized signals of the information sources. Instead, the observable for

each information source i is a(si ,ρi), which depends on the the realized signal and

the precision of information source i. We assume that for each precision ρi , the ob-

servable a(si ,ρi) is invertible as a function of si . Denote the realized observable as

ai and the inverted function for signals as sa(ai ,ρi). Given the observable ai and the

conjectured precision ρ̂i , the decision-maker’s conjectured signal is ŝi = sa(ai , ρ̂i),

which might be different from the actual realized signal si . Moreover, conditional

on the realized state θ, the actual observables are i.i.d. according to the distribu-

tion function F on R where

F(a) =
∫

[ρ,ρ]
Fρ

(
sa(a,ρ)

)
dG(ρ),

with Fρ ∼ N
(
θ, 1

ρ

)
for each ρ ∈ [ρ,ρ]. Later in this paper, we will discuss several

different observables. For instance, the unbiased signal sources might be directly

observable — a(si ,ρi) = si . We also study the case in which the decision-maker

can observe estimates of Bayesian agents based on their common prior and private

signals — a(si ,ρi) =
ρisi+ρµµ
ρi+ρµ

.

Belief Updating Denote the profile of precisions as ρN := (ρ1, ...,ρN ), the profile

of conjectured precisions as ρ̂N := (ρ̂1, ..., ρ̂N ), and the profile of observables as

aN := (a1, ..., aN ) , and for each n ≥ 1 the set of distributions over Rn as ∆(Rn).

Following Epstein and Schneider (2007) and Epstein and Schneider (2008), we

define La(ρ̂N ,θ) ∈ ∆(Rn) as the likelihood function for the profile of observables,

which is the conditional distribution for observables given conjectured precisions

ρ̂N and the realized state θ. Then the set of likelihood functions of the decision-

maker can be represented by LaN , where

LaN = {La(ρ̂N ,θ) ∈ ∆(RN ) : ρ̂N ∈ [ρ,ρ]N , θ ∈ R}.

Note that to calculate the likelihood function of observables, one can first cal-
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culate the likelihood function of signals, which is just a multivariate normal distri-

bution with independent marginals, and then make use of the one-to-one mapping

between signals and observables given the profile of conjectured precisions.

We assume the decision-maker adopts full Bayesian updating (Pires, 2002) to

derive posteriors using the prior P0 and the set of likelihood functions LaN . In other

words, given the realized profile of observables aN , and a vector of conjectured

precisions ρ̂N , the posterior over the states P a
N (aN , ρ̂N ) ∈ ∆(R) is obtained by apply-

ing Bayes’ rule.5 Then, the posteriors of the decision-maker can be represented by

the following set:

Pa(aN ) =
{
P a
N (aN , ρ̂N ) ∈ ∆(R) : ρ̂N ∈ [ρ,ρ]N

}
.

After observing the profile of observables, the decision-maker chooses an esti-

mate g of the state θ to minimize some loss function u(g−θ). We assume u : R→ R
is strictly convex and minimized at 0. Given multiple beliefs, the decision-maker

is a maxmin expected utility (MEU) maximizer following Gilboa and Schmeidler

(1989), and she evaluates her estimate based on the worst possible belief. This

preference might be a result of the decision-maker being ambiguity averse, or the

decision-maker’s intention to derive a robust upper bound for the expected loss.

That is, the decision-maker’s objective is to minimize the maximal expected loss

across all distributions in the set of posteriors. She picks an estimate g to solve the

following min-max problem:

min
g

max
p∈Pa(aN )

{
Ep

[
u(g −θ)

]}
.

To maintain tractability, we made several assumptions. In Section 6, we discuss

how our results depend on these assumptions. We find our main insights continue

to hold for general signal distributions, as well as for ambiguity attitudes beyond

MEU. By contrast, we highlight that our belief-updating rule plays a crucial role

5Under this assumption, for each conjectured precision, the decision-maker updates as if she
were certain the conjecture is correct. Alternatively, we could allow the decision-maker to up-
date her beliefs given a conjectured non-degenerate distribution about the precision of each signal.
Under such conjectures our qualitative results still go through, however expressions become cum-
bersome.
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in our results.

In the rest of the paper, we focus on the limiting case in which the number of

information sources N goes to infinity. 6

3 Asymptotic Beliefs
In this section, we characterize how the agent’s posterior set behaves as the number

of observables grows large. In particular, recall that for any N , the agent observes

aN . Given a profile of conjectured precisions ρ̂N , his posterior belief is P a
N (aN , ρ̂N ).

We are interested in the asymptotic behavior of the agent’s posterior set: Pa(aN ).

Thus, we define the limit set of posteriors:

Pa
∞(a) = {P : ∃ρ̂ ∈ [ρ,ρ]∞ s.t. P = lim

N→∞
P a(aN , ρ̂N )}

Note Pa
∞(a) is defined as the set of limits of posteriors that can be generated by

some profile of precisions. That definition is silent about which posterior beliefs

converge. In fact, many non-converging sequences of posterior beliefs exist, but,

as Section 4 will make clearer, these sequences are immaterial for our discussion.

To characterize this set, we start by interpreting the optimization problem de-

scribed in Section 2 as a zero-sum game between the decision-maker and nature.

Under this interpretation, after signals are realized, the decision-maker chooses

an estimate for the state to minimize her loss function. Subsequently, with knowl-

edge of the estimate, nature is free to choose, for each signal, any precision within

the uncertainty set of the decision-maker. The decision-maker’s objective is then

to guarantee the lowest loss conditional on the fact that nature acts after her and

to her detriment.

3.1 Quadratic Loss with Observable Signals

To help build intuition, and as a rough sketch of the proof of our more general

results, we describe and partially analyze the special case in which the loss func-

tion is quadratic, whereas the observables are simply equal to the realized signal

6In a previous version of the paper we studied the finite N case, which we omit for brevity.
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values; that is, u(g − θ) = (g − θ)2 and a(si ,ρi) = si . In other words, the decision-

maker has access to N unbiased and normally distributed signals si = θ + εi , with

εi ∼ N
(
0, 1
ρi

)
. Recall the true ρi are unknown to the decision-maker, who enter-

tains an interval of perceived precision [ρ,ρ]. The decision-maker’s objective is to

minimize the maximal mean-squared errors across all distributions in the set of

posteriors. We denote by sN the vector of the N observed signals. She picks an

estimate g to solve the following problem:

min
g

max
p∈Ps(sN )

{
Ep

[
(g −θ)2

]}
.

Due to the properties of the quadratic loss function, the above optimization

problem can be simplified to one that only depends on the conditional mean and

variance of the state, which can be calculated in closed form due to the assumption

of joint normality. Denote them as E[θ|sN , ρ̂N ] =
ρ̂N ·sN+ρµµ
ρ̂N ·1N+ρµ

and V[θ|sN , ρ̂N ] =
(
1 −

ρ̂N ·1N
ρ̂N ·1N+ρµ

)
1
ρµ

respectively. Then, the objective of the decision-maker becomes

min
g

max
ρ̂∈[ρ,ρ]N

{(
g −E[θ|sN , ρ̂N ]

)2
+V[θ|sN , ρ̂N ]

}
.

By changing the precision of each signal, nature affects both the squared bias

and the variance. It determines variance by choosing the sum of precisions across

signals, and, importantly, it affects the posterior mean by assigning different preci-

sions to different signal realizations. From the definition of the posterior variance,

we see that as long as each signal is somewhat informative (ρ > 0), as the num-

ber of available signals N increases, the posterior variance converges to 0. Hence,

the more signals the decision-maker receives, the more nature focuses on affecting

the decision-maker’s loss function via the squared bias. In the extreme case, in

which N → ∞, for any choice of precisions that nature may consider, the poste-

rior variance is equal to 0 and nature utilizes the square bias as its only lever. We

next characterize nature’s behavior when N → ∞, where nature’s choice of what

precision to attribute to which signal exclusively affects the posterior mean.
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Definition 1. An assignment ρ̂ : R∞→ [ρ,ρ]∞ is order-preserving if si ≤ sj =⇒ ρ̂i ≤
ρ̂j for all i, j ∈ N; and it is order-reversing if si ≤ sj =⇒ ρ̂i ≥ ρ̂j , for all i, j ∈ N. An
assignment is a threshold assignment if it is order-preserving or order-reversing and
Im(ρ̂) ∈

{
ρ,ρ

}∞
Lemma 1. Let ρ̂∗ solve maxρ̂∈[ρ,ρ]∞

(
g − E[θ|s, ρ̂]

)2
for some g ∈ R. Under observable

signals, ρ̂∗ is a threshold assignment.

Nature finds it optimal to assign precisions to signals to maximize the squared

bias. Intuitively, the way to do so is to either maximize or minimize the posterior

mean: if the decision-maker’s estimate g is relatively low, nature finds it optimal

to maximize the posterior mean, and vice versa. The intuition for Lemma 1 can be

derived by analyzing the expression of the posterior mean whenN goes to infinity.

In that case, given an observed empirical distribution of signals, F, the expression

for the posterior mean can be written as: E[θ|s, ρ̂] =
∫
sρ̂(s)dF(s)∫
ρ̂(s)dF(s)

. Consider nature’s

choice to maximize this expression, while keeping the same sum of precisions∫
ρ̂(s)dF(s) = c ∈ [ρ,ρ]. Because c pins down the denominator of the expression

for the posterior mean, nature chooses an assignment to maximize
∫
sρ̂(s)dF(s). To

do so, nature assigns high-valued signals high precisions and low-valued signals

low precisions, thereby moving the posterior mean towards higher signal realiza-

tions. Using the extreme precisions ρ and ρ is the best way to do that, therefore

justifying the optimality of threshold strategies. Naturally, an analogous strategy

is optimal to minimize the posterior mean.

To summarize this example, as the number of signals goes to infinity, nature

focuses on affecting the agent’s bias by strategically assigning precisions to signal

realizations. Asymptotically, this is the only way nature can affect the agent’s loss,

as variance goes to zero regardless of the decision-maker’s conjecture. Finally, na-

ture can implement this bias-maximizing behavior applying threshold strategies:

monotonic precision assignments that use only extreme precisions.

3.2 Ambiguity Does Not Vanish

When signals are observable and the loss function is quadratic, we argued in the

previous section that (i) nature can restrict attention to threshold strategies, and
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(ii) as the number of signals goes to infinity, the set of posteriors converges to a set

of degenerate distributions. We now show these two insights generalize.

First, we provide sufficient conditions on observables that guarantee nature

can still restrict attention to threshold strategies. Recall that under general ob-

servables the agent cannot observe the realized signal, but rather has to backtrack

those signals based on their conjectured precision. In particular, given conjectures

precision ρ̂i and observable realization ai , the agent believes the signal realization

is ŝi = sa(ρ̂i , ai). In contrast to the observable signals case, when associating a par-

ticular precision to an observable realization, the agent changes his interpretation

about the signal realization. The following assumption ensures the effect of this

association does not break the monotonicity between observables and inverted sig-

nals that is required for simple threshold strategies to be optimal.

Assumption 1. Define the weighted inverted signal function g(ρ,x) ≡ ρsa(ρ,x). g is
affine in ρ and strictly supermodular.

This assumption allows for a broad range of observables relevant in several

economics applications. The two examples described in the setup — directly ob-

servable unbiased signals and observable estimates from Bayesians with private

information — satisfy this assumption. In the context of financial markets, the de-

mand of CARA investors for an asset with value θ also satisfies Assumption 1. In

particular, when the unbiased signals are the investor’s private information, their

demand for the risky asset is a(si ,ρi) = 1
α (ρisi + ρµµ), where α is their absolute risk

aversion.

Lemma 2. Let ρ̂∗ solve maxρ̂∈[ρ,ρ]∞
(
g −E[θ|a, ρ̂]

)2
for some g ∈ R. Under Assumption

1, ρ̂∗ is a threshold assignment.

We now address the asymptotic behavior of posteriors. As previously dis-

cussed, each strategy of nature corresponds to a plausible belief in the agent’s be-

lief set. In the previous section, as the number of observables went to infinity, we

argued that nature loses the ability to influence the posterior variance, as aggregate

information becomes infinitely precise. However, by assigning precisions to sig-

nals, nature could still affect the agent’s bias. With a general loss functions, higher
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moments of the posterior distribution are payoff-relevant for the agent. Neverthe-

less, the above rationale is preserved: all moments but the posterior mean become

irrelevant asymptotically, and, in the limit, nature can only command the interval

of posterior means. As a consequence, the set of posterior beliefs converges to an

interval of degenerate distributions regardless of the loss function. Recall that F is

the actual distribution over observables given θ.

Theorem 1. Let Assumption 1 hold. Define:

m =
ρ
∫ m
−∞ sa(x,ρ)dF(x) + ρ

∫∞
m

sa(x,ρ)dF(x)

ρF(m) + ρ (1−F(m))
, m =

ρ
∫ m
−∞ sa(x,ρ)dF(x) + ρ

∫∞
m

sa(x,ρ)dF(x)

ρF(m) + ρ (1−F(m))
.

Then, for almost all sequences, a, of realized observables,

1. For all sequences ρ̂ ∈ [ρ,ρ]∞,

m ≤ lim
N→∞

infEPN (aN ,ρ̂N )[θ|aN , ρ̂N ] ≤ lim
N→∞

supEPN (aN ,ρ̂N )[θ|aN , ρ̂N ] ≤m.

2. The limit set of posteriors is a set of degenerate distributions independent of s:

P∞(s) = {δb :m ≤ b ≤m}.

Theorem 1 formalizes the observation above. It starts by establishing that, for

any precision assignment, posterior means are bounded by two real numbers: m,

m. These numbers formalize the notion of maximal and minimal posterior means

that nature can achieve asymptotically. The second part of the theorem shows that

any converging posterior approximates a degenerate distribution, and that distri-

bution may have any mean between the boundaries m and m. Finally, Theorem 1

characterizes the values of these boundaries. For example, m is generated by the

following strategy of nature: give the highest precision to signals higher than m

and the lowest precision to values below it. By giving more weight to high signals,

nature moves the posterior mean up. The highest such posterior mean is expressed

by the fixed point m.
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The fundamental consequence of Theorem 1 is that induced ambiguity on the

state does not vanish asymptotically. Rather, the agent still entertains a wide range

of values for the state θ even when he has access to an arbitrarily large num-

ber of informative observables. This finding is in stark contrast to quantifiable

risk. In fact, a secondary consequence of the result above is that quantifiable risk

completely disappears even in our setting: all the limit posteriors are degenerate

around their means. In the next section, we show how the presence of ambiguity

in the limit set of posteriors affects the optimal estimate of the agent.

4 Asymptotic Estimate
In this section, we characterize the asymptotic behavior of the decision-maker.

In particular, we are interested in analyzing how ambiguity with regards to the

decision-maker’s information sources affects her ability to correctly estimate the

state as the number of observables increases. Recall that, for each realization of

observables aN , her estimate g∗(aN ) minimizes her loss function, considering the

worst-case posterior in Pa(aN ). Because observables and loss functions are arbi-

trary, obtaining an explicit solution to g∗(aN ) for finite N is not an easy task, which

makes a direct attempt at characterizing the solution as intractable. Rather, we

leverage on Theorem 1 to solve this problem. The main result of this section char-

acterizes the asymptotic estimate by showing the following limit exchange holds.

lim
N→∞

argmin
g

max
p∈Pa(aN )

Ep
[
u(g −θ)

]
= argmin

g
max
p∈P∞(a)

Ep
[
u(g −θ)

]
.

Theorem 1 states that P∞(a) = {δm :m ∈ [m,m]} for almost all realizations of

observables. The limit swap above suggests that, as N grows, the optimal esti-

mate converges to the estimate of an agent who does not know the mean of θ but

wants to guarantee the minimal loss in the interval [m,m]. This observation greatly

simplifies the characterization: the asymptotic behavior of the estimate is pinned

down by an extremely simple optimization problem. In this problem, the agent

only cares about how biased her estimate is in the worst-case scenario. Recall that

her loss is larger the further from the true state her estimate is. If her estimate is

too far fromm, she has a large utility loss in the worst case, in which the state is ac-
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tually m. A symmetric argument holds for m. Therefore, she guarantees minimal

loss by being indifferent between these two extreme possible values of the state.

This intuition is formalized in the next result.

Theorem 2. g∗(sN )
a.s.−−→ g∗, where g∗ is the unique solution to u(g∗ −m) = u(g∗ −m).

Although intuitive, this result depends on the non-trivial exchange of limits

mentioned above. A priori, it is not clear that the limit swap holds. First, limits of

optimizers of a sequence of optimization problems are not guaranteed to coincide

with the optimizers of the limit problem. Second, not all distributions in the set

Pa(aN ) converge. Indeed, sequences of precisions always exist such that posterior

beliefs diverge. Still, our result confirms the limit exchange is valid and the heuris-

tic argument we gave above goes through formally. We make this argument in two

steps, addressing each of the concerns highlighted above.

The first step is to show the decision-maker’s optimization can be approxi-

mated by an optimization that considers only the mean of posterior distributions,

as N grows large. For any finite N , the decision-maker’s loss is clearly affected

by higher moments of the posteriors, but because quantifiable risk vanishes as the

number of observable information sources grows, the mean progressively becomes

the only relevant moment. The second step relies on an extension of the Glivenko-

Cantelli theorem. It provides the important result that g∗(aN ) are bounded. Recall,

from part 1 of Theorem 1 that non-converging posteriors are bounded. Thus, intu-

itively, N byN , the payoff obtained by a non-converging sequence can be bounded

by the payoff of two converging sequences, so that restricting attention to the con-

verging ones turns out to be without loss of generality. As a consequence, non-

converging beliefs are innocuous: we can characterize the asymptotic behavior of

the agent’s estimate without addressing them. We prove these two steps are suffi-

cient to guarantee the convergence of g∗.

Theorem 2 shows the asymptotic estimate is typically incorrect. To illustrate,

recall that [m,m] in Theorem 1 are independent of the particular choice of the loss

function. Rather, they are determined by the initial ambiguity and the observable

function a. By contrast, the asymptotic estimate is a consequence of the behavior of

the loss function, u, on the interval of posterior means [m,m]. This finding suggests

the decision-maker estimates the state correctly asymptotically only in the knife-
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edge case in which her loss function coincides with the observable function in a

particular way. Moreover, in that case, perturbing either of these functions would

again lead to an incorrect limit estimate. This result is particularly striking when

compared to the behavior of a Bayesian agent who knows the precision of each

source.7 Because observables map one to one to signals conditional on precisions,

a Bayesian’s asymptotic estimate would be equal to the state, regardless of loss

function. The next two examples illustrate this result.

Example 1: Back to Quadratic Loss with Observable Signals We revisit the ex-

ample from Section 3.1 to show a case in which the agent correctly estimates the

state asymptotically. By Theorem 2, we have that, under quadratic losses, g∗ = m+m
2 .

Because signals are observable, Theorem 1 states that m and m are defined by:

m =
ρ
∫ m
−∞xdF(x) + ρ

∫∞
m
xdF(x)

ρF(m) + ρ (1−F(m))
, m =

ρ
∫ m
−∞xdF(x) + ρ

∫∞
m
xdF(x)

ρF(m) + ρ (1−F(m))
.

Normality implies the real distribution of signals F is symmetric around the

true state θ. Thus, in this case, the decision-maker estimates the state correctly.

This result is a consequence of the symmetric loss function, as well as the symme-

try of the normal distribution, and the assumption of observable signals.

Corollary 1. g∗(sN )
a.s.−−→ θ.

The next example breaks this coincidence to show this result is knife-edged.

Example 2: Asymmetric Loss with Observable Signals In this example, we

maintain the assumption of observable signals, but let the loss function be given

by:

u(g −θ) =

(g −θ)2 if g ≥ θ

λ(g −θ)2 if g < θ
.

7We could also consider the comparison with a Bayesian agent who does not know the preci-
sion of each information source, but rather entertains a distribution over those precisions. The
comparison remains the same as long as their statistical model is identified.
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with λ > 0. That is, the decision-maker’s loss is different for over- and under-

estimating the state θ. If λ > 1, for example, the agent is less concerned with losses

when she overestimates the true state, compared to when she underestimates it.

Her concern could be lower for many reasons. For instance, a health official who

wants to learn about the prevalence of a disease in a population would likely be

more affected if they believes the transmission rate is lower than it really is than if

they believe it is higher. Conversely, a product developer may face a much higher

personal loss if they believe demand is higher than it actually is and end up devel-

oping a costly product that fails to be marketed.

Following Theorem 2, we have that the optimal estimate satisfies g∗ = m+
√
λm

1+
√
λ

.

However, because the results of Theorem 1 do not depend on the loss function,

we still have that m+m
2 = θ. Thus, the agent estimates incorrectly for any λ , 1.

In particular, if λ < 1, her optimal estimate is below the real value of the state:

g∗ < θ. The example above shows how an environment in which an agent estimates

correctly can be easily perturbed so that the agent no longer estimates the state

correctly. Note that, in this example, we maintain the assumption that signals are

observable, but depart from the assumption of symmetric losses.

In the next section, we explore applications of our model. In one of these appli-

cations, we depart from Example 1 by changing the assumption of signal observ-

ability instead of the symmetry assumption. We characterize the optimal estimate

for that case and show how, again, the decision-maker generically fails to correctly

estimate the state.

Disagreement in Asymptotic Estimates The above example also highlights that

the loss function directly affects the agent’s asymptotic estimate. Note a Bayesian

decision-maker’s posterior belief converges to a Dirac measure on the real state.

Thus, with multiple Bayesian agents, as the available information grows, regard-

less of their loss functions, Bayesian agents will agree on the optimal estimation

of the state.8 By contrast, our agent’s asymptotic estimate continues to depend on

the particular form of the loss function. Thus, ambiguity about the precision of in-

8With observable signals, this result holds true even for misspecified Bayesian agents who
wrongly perceive the precision of the signals. As the amount of information grows without bounds,
their estimates converge to the same value.
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formation sources might rationalize disagreement even between informed experts

who aim to find out the truth, for example, scientists with access to the same large

dataset.

5 Applications
In this section, we explore different applications of our main results by changing

the set of observables available to the decision-maker or her loss function.

5.1 Comparative Statics of Ambiguity

First, we revisit Example 1 on quadratic loss with observable signals. We claim

that, contrary to intuition, making all signals more precise is not necessarily ben-

eficial to the decision-maker.

Recall that by Theorem 1, the limit set of posteriors is a set of degenerate dis-

tributions δb with m ≤ b ≤m, where

m =
ρ
∫ m
−∞xdF(x) + ρ

∫∞
m
xdF(x)

ρF(m) + ρ (1−F(m))
, m =

ρ
∫ m
−∞xdF(x) + ρ

∫∞
m
xdF(x)

ρF(m) + ρ (1−F(m))
.

To see how the set of precisions deemed possible by the decision-maker affects

the limit set of posterior beliefs, first note m and m only depend on the fraction

of the highest and the lowest possible precisions, instead of their absolute values,

because we can rewrite m and m as

m =

∫ m
−∞xdF(x) + η

∫∞
m
xdF(x)

F(m) + η (1−F(m))
, m =

η
∫ m
−∞xdF(x) +

∫∞
m
xdF(x)

ηF(m) + (1−F(m))
,

where η = ρ
ρ . The following proposition shows bothm andm change with η mono-

tonically.

Proposition 1. Let η = ρ
ρ ∈ (1,+∞). Under observable signals, m is monotonically

increasing in η and m is monotonically decreasing in η. Moreover, when η → +∞, we
have m→∞ and m→−∞; when η→ 1, we have m−m→ 0.
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In Proposition 1, η = ρ
ρ can be interpreted as the degree of ambiguity in the

set of possible precisions [ρ,ρ]. When more ambiguity exists regarding precisions

of signals ex ante, the limit set of posteriors also expands, and hence, ambiguity

regarding states is greater ex post.

Now, we explore the welfare implication of such comparative statics. By Corol-

lary 1 of Theorem 2, the decision-maker always estimates correctly at the limit

when signals are observable. Thus, the optimal utility depends solely on the size

of the limit set of posterior means, that is, m−m. Corollary 2 directly follows from

Proposition 1.

Corollary 2. Under observable signals, as η increases, the decision-maker is strictly
worse off asymptotically.

Corollary 2 has two possibly counterintuitive implications. First, it implies

that if we fix ρ and increase ρ, the decision-maker is strictly worse off. That is,

she prefers all of her signals to be imprecise rather than being ambiguous that

some signals might be more precise. Second, consider two decision problems with

the set of possible precisions given by [ρ
1
,ρ1] and [ρ

2
,ρ2], respectively. If ρ

2
> ρ1

and η1 = ρ1
ρ

1
< η2 = ρ2

ρ
2
, the decision-maker believes that any signal in the second

decision problem is more precise than any signal in the first one, but she is strictly

worse off in the second decision problem. This result shows that making all signals

more precise is not necessarily beneficial to the decision-maker.

5.2 Misspecification and Ambiguity

In this section, we show that a small amount of ambiguity might substantially

amplify the effect of model misspecification. We say that an agent is misspecified

if the real precisions of information sources are not in her consideration set, that

is, suppG ∩ [ρ,ρ] = ∅, where G is the true distribution of precisions. To focus on

a simple environment, we proceed under the assumption that the agent observes

unbiased signals directly, but has an asymmetric loss function u as in Example 2.

Note the impact of prior ambiguity can still be captured by the ratio η defined in

the last section. For the special case of no ambiguity, η = 1. We say an agent is a

misspecified Bayesian, if she is misspecified and faces no ambiguity, η = 1.
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Proposition 2. Assume signals are observable and u is as in Example 2. For any η > 1,
and any constant C > 0, true distributions of precisions G exist such that |g∗ −θ| > C.

To see the connection of this proposition with misspecified Bayesians, note the

misspecified Bayesian agent believes the precision of information source i to be

ρ̂i < suppG. However, because signals are unbiased, this misspecification has no

effect on asymptotic learning, regardless of the distribution G. In particular, for

any loss function, the agent estimates the state correctly and, therefore, experi-

ences zero loss. Now, consider this same agent when facing a small amount of

ambiguity, η, very close to 1. By Proposition 2, true distributions exist over preci-

sions, G, such that this agent makes arbitrarily large estimation errors. Thus, any

amount of ambiguity, no matter how small, might be sufficient to cause large devi-

ations from the correct estimate. These large deviations occur in settings in which

the true precision of the signals is rather low. This observation is inconsequential

for the misspecified Bayesian agent, who still estimates the state correctly. How-

ever, in the presence of ambiguity, the less informative the signals are in reality,

the bigger this gap will be.

5.3 Aggregating Estimates

Next, we study next the problem of an ambiguity-averse econometrician who aims

to estimate the state by aggregating estimates by numerous Bayesian agents. The

agents share the same prior but have access to different information sources. Al-

though the econometrician knows the prior distribution of the state, she does not

know the precision of the individual sources. This environment is reasonable in

many applications. For instance, consider a healthcare official assessing the preva-

lence of a disease in a region. She relies on hospital reports to do so, but is not sure

about the quality of their data-collection protocols.

Formally, we assume all agents and the decision-maker share the same prior

beliefs about the state θ. As in the previous sections, according to the prior, θ ∼
N

(
µ, 1

ρµ

)
. Conditional on the realization of θ, agent i receives a private signal

si = θ + εi , where εi ∼ N
(
0, 1
ρi

)
. That is, each agent receives an unbiased signal

about the state. We consider the case in which each agent attempts to estimate the
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realized value of θ to minimize the mean-squared error. Given the prior and the

private signal, the optimal Bayesian estimate for agent i would then be a(si ,ρi) =

E[θ|ρi , si] =
ρµµ+ρisi
ρµ+ρi

. These actions are the ones the econometrician has access to.

The setup studied in this section is graphically depicted in Figure 1.

Figure 1: Learning From Actions Setup
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Although each agent knows the precision of their private signal, the econo-

metrician does not. We once more assume that for each signal, the econometri-

cian considers a set of possible precisions
[
ρ,ρ

]
. Because each action is a convex

combination of the private signal si and the mean of the prior µ, an econome-

trician who intends to estimate the value of θ, will first have to transform the

actions back to signals. For a conjectured precision ρ̂i , the recovered signal will

be sa (ai , ρ̂i) = ai +
ρµ
ρ̂i

(ai −µ). We again assume the loss function of the econometri-

cian is quadratic. We start by utilizing Theorem 1 to characterize the limit set of

posteriors of the econometrician in this example.

Proposition 3. Let a(si ,ρi) =
ρµµ+ρisi
ρµ+ρi

. The boundaries of the limit set of posteriors for
the econometrician are:

ma =
ρ
∫ ma
−∞xdF(x) + ρ̄

∫∞
ma
xdF(x) + c

ρF(ma) + ρ̄ (1−F(ma))
ma =

ρ
∫ ma
−∞xdF(x) + ρ

∫∞
ma
xdF(x) + c

ρF(ma) + ρ (1−F(ma))
,

where c = (θ −µ)
∫ ρρµ
ρµ+ρdG(ρ).
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The boundaries of the limit set of posteriors are defined by a fixed point similar

to the one from the example with observable signals. However, here, the econo-

metrician has to backtrack realized signals from observed estimates, which leads

to an adjustment term c. The next result is a corollary of Theorem 2.

Corollary 3. For almost all sequences a and values of the state θ, limN→∞ |g∗(aN )−θ| >
0.

That is, the econometrician’s estimation converges away from the truth almost

surely, because inverting from observables to signals depends on the conjectured

precisions and of the prior mean. The lack of knowledge about the former makes

distinguishing signal realizations from the prior mean impossible, thus generating

a bias in the recovered signals. The following assumption allows us to clearly

characterize the optimal estimate and to analyze comparative statics.

Assumption 2. For some ρ∗ ∈ [ρ,ρ], G = δρ∗ .

Although the econometrician might consider different precisions for each sig-

nal, under Assumption 2, in reality, all signals share the same precision. This as-

sumption allows us to characterize how the econometrician estimate differs from

the true parameter value. We say the econometrician overreacts if |g∗−µ| > |θ−µ| and

underreacts if the inequality is reversed. In other words, an estimation overreacts

to information if it is further from the prior mean than the real state is.

Proposition 4 (Guess Characterization). Let a(si ,ρi) =
ρµµ+ρisi
ρµ+ρi

. Under Assumption

2, g(An)
a.s.−−→ g∗, where

1. If µ = θ, g∗ = θ

2. If µ , θ, then ∃ρ̃ < ˜̃ρ such that

• If ρ∗ ≤ ρ̃, then |g∗−µ| > |θ−µ| and the agent underreacts to observed actions

• If ρ∗ ≥ ˜̃ρ, |g∗ −µ| < |θ −µ| and the agent overreacts to observed actions

• If ρ̃ < ρ∗ < ˜̃ρ, underreacting if |θ − µ| is small and overreacting if |θ − µ| is
large,

where: ρ̃ =
2ρρ

ρ+ ρ
˜̃ρ = ρF (m( ˜̃ρ,µ)) + ρ (1−F (m( ˜̃ρ,µ)) .
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Proposition 4 reveals that whether the decision-maker over- or underreacts de-

pends on the true precision of the signals and possibly the realization of the state

θ. Roughly speaking, the optimal robust estimate corresponds to the decision-

maker trying to backtrack the mean of the unobservable signals from the mean

of observed actions. Because signals are unbiased, their unobservable mean is ef-

fectively θ, the state the econometrician aims to estimate. When ρ∗ is high, θ is

relatively close to the mean of actions, because the agents place a high weight on

their unbiased signals when choosing their actions. However, the econometrician

does not know the real precision, so she backtracks signals from actions using,

roughly, the same method regardless of what ρ∗ is. Therefore, the direction of her

estimation error depends on the true precision.

Finally, as the prior precision ρµ changes, the accuracy of the optimal estimate

is not monotonic. The estimation error is related to how actions are contaminated

by the prior, making it impossible for the agent to disentangle the effect of the prior

from the effect of individual information. When the prior is extremely imprecise,

ρµ ≈ 0, this contamination is minimal, and the optimal estimate is approximately

equal to the one in the observable signals example: the econometrician estimates

correctly. On the other hand, when the precision of the prior grows to infinity,

ρµ → ∞, the agent also estimates correctly by essentially disregarding the infor-

mation in the observed actions. For intermediate values, however, Corollary 3

implies that the estimate is wrong almost surely. In other words, the accuracy of

the estimate is not monotonic with the precision of the prior: better information

ex-ante does not guarantee a more correct estimate asymptotically.

6 Discussion
To maintain tractability and clarity, our analysis has relied on four main assump-

tions: (i) the decision-maker adopts full Bayesian updating; (ii) the decision-maker

only knows the highest possible and lowest possible precisions of each information

source and nothing else; (iii) both the state and signals follow normal distribu-

tions; and (iv) the decision-maker is an MEU maximizer regarding ambiguity . In

this section, we briefly argue our main result — that ambiguity does not vanish

asymptotically — remains valid when we relax the last three assumptions. Hence,

the essential assumption is the updating rule under ambiguity.
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Updating Rule. First, we note our result does rely on the updating rule under

ambiguity. An alternative to the full Bayesian updating rule is the maximum-

likelihood rule. Unlike full Bayesian updating, where the decision-maker applies

Bayes’ rule to the entire set of priors, the decision-maker with the maximum-

likelihood rule would discard priors that do not ascribe the maximal probability

to the observed signals and update the remaining priors according to Bayes’ rule.

Hence, the maximum-likelihood rule suggests that ambiguity might vanish even

with one single signal.

Information about Precisions Consider the case in which the decision-maker

has more information about the precisions of her information sources ex-ante.

Specifically, the decision-maker knows two groups of information sources exist.

Group 1 consists of a fraction α ∈ [0,1] of information sources with shared high

precision ρ, and Group 2 consists of fraction 1 − α with shared low precision ρ.

The decision-maker does not know which group a particular information source

belongs to. Recall the optimization problem of the decision-maker can be inter-

preted as a zero-sum game between her and nature. The decision-maker’s addi-

tional information heavily restricts nature’s choices on precisions. However, when

α ∈ (0,1), nature can still induce the decision-maker to have a relatively high (low)

posterior mean of the state by assigning high signals to Group 1 (Group 2) subject

to the new constraint. Hence, even with the additional restrictions, ambiguity will

not asymptotically vanish. The asymptotic estimate of the decision-maker will be

correct only with observable signals and a symmetric loss function, and incorrect

otherwise.9 Regardless of whether her estimate is correct, for any α ∈ (0,1), the

decision-maker faces ambiguity, and thus, suffers from a loss. Consequently, an

decision-maker who believes all her information sources to have minimal preci-

sion ρ, is better off than an decision-maker who believes a fraction of her informa-

tion sources have precision ρ > ρ.

9Note that if α = 1 or 0, that is, if the decision-maker knows that all of her information sources
are precise or imprecise, asymptotic learning is successful, and the decision-maker has asymptotic
loss 0 because no ambiguity exists.
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Distributions Typically, ambiguity does not vanish even when the state and sig-

nals are not normally distributed. In particular, as long as the decision-maker’s

belief set is rich enough, ambiguity about the state will persist asymptotically. We

expand on this point next. For general distributions, the precision of each signal is

no longer fully captured by the reciprocal of its variance. To extend our model to

other distributions, assume the decision-maker considers a set of likelihood func-

tions for each information source. As in the main model, each allocation of like-

lihoods to information sources defines a belief for the agent. Under full Bayesian

updating for each belief, the agent forms a posterior on the state. As long as two

different beliefs result in two different posterior means, our results hold. This con-

dition is generic: if a non-singleton set of likelihood functions does not satisfy this

property, one of the functions can be perturbed so that the property holds and

ambiguity does not vanish. Finally, departing from normal distributions, higher

moments of the posterior no longer necessarily vanish. Thus, in addition to the

induced ambiguity, the agent might face risk even asymptotically.

Ambiguity Preferences Finally, we can extend the decision-maker’s preference

under ambiguity. As long as the ambiguity the decision-maker faces takes the

form of a set of beliefs over the state and signals and she adopts the full Bayesian

updating rule upon receiving signals, Theorem 1 still holds. Indeed, our anal-

ysis on asymptotic beliefs does not rely on the specific utility function of the

decision-maker. For instance, ambiguity does not vanish if the decision-maker

has an uncertainty-averse preference introduced by Cerreia-Vioglio et al. (2011),10

which incorporates most ambiguity-averse preferences used in the literature, in-

cluding variational preferences (Klibanoff et al., 2005), smooth ambiguity prefer-

ences (Maccheroni et al., 2006), and, of course, MEU.

10An uncertainty-averse preference over acts is represented

f % g⇐⇒ inf
p∈∆

G
(∫

u(f )dp,p
)
≥ inf
p∈∆

G
(∫

u(g)dp,p
)
.
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Appendix: Proofs

Proof of Lemma 2

By the form of the objective function, it is easy to see that ρ̂∗ solves maxρ̂[ρ,ρ]∞E[θ|a, ρ̂]

or minρ̂[ρ,ρ]∞E[θ|a, ρ̂] .

Given a distribution of observables, F with density f , recall that

v(ρ̂) ≡ E[θ|a, ρ̂] =
∫
ρ̂(x)ŝ (x, ρ̂(x))∫
ρ̂(x)f (x)dx

f (x)dx

Fix a value M ∈ [ρ,ρ] and consider the problem:

max
ρ̂[ρ,ρ]∞

{v(ρ̂) :
∫
ρ̂(x)f (x)dx =M}

=
1
M

max
ρ̂[ρ,ρ]∞

{
∫
ρ̂(x)ŝ (x, ρ̂(x))f (x)dx :

∫
ρ̂(x)f (x)dx =M}

where the last equality is justified because we are equating the denominator of

v to M. By Lagrange multiplier Theorem in Banach spaces, we obtain that there is

λ such that, for each x:

ρ̂(x) ∈ arg max
ρ∈[ρ,ρ]

{ρŝ(x,ρ)−λ(ρ −M)}.

By the supermodularity in Assumption 1, we know the objective function of

each of these optimizations is supermodular, so ρ̂(x) is increasing with x, according

to Topkis’ lemma. By affinity, the solution can be assumed to be an extreme point

of the interval [ρ,ρ]. Therefore, for each M the solution is a threshold. Thus,

maximizing over M’s the solution must also be a threshold. Clearly, the same

result holds for minimization and the proof is concluded.
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Proof of Theorem 1

For any realization of observables aN , let FN ∈ ∆(R) be the empirical distribution

of observables. We abuse notation to write sa(aN , ρ̂N ) as the vector in which the

i-th entry is sa(aNi , ρ̂
N
i ). Given a conjecture ρ̂N , we know the backtracked signals

sa(aNi , ρ̂
N
i ) are jointly normal with the state, allowing us to calculate the posterior

mean as:

E[θ|aN , ρ̂N ] =
ρ̂N · sa(aN , ρ̂N ) + ρµµ

ρ̂N ·1+ ρµ
.

Define:

mN ≡ min
ρ̂∈[ρ,ρ]N

E[θ|aN , ρ̂N ] , mN ≡ max
ρ̂∈[ρ,ρ]N

E[θ|sN , ρ̂N ].

The above mN and mN are (random) bounds on posterior means. Assume that

ρN and ρN are the respective maximizers.

Let ρ̂ : R → [ρ,ρ] be a precision assignment. Let F be the real distribution

of observables. Again, given a precision assignment, signals are jointly normally

distributed with the state, so we can write the posterior mean as:

E[θ|ρ̂] =
∫
ρ̂(x)sa(x, ρ̂(x))dF(x)∫

ρ̂(x)dF(x)

Finally, let:

m = min
ρ̂:R→[ρ,ρ]

E[θ|ρ̂] , m = min
ρ̂:R→[ρ,ρ]

E[θ|ρ̂].

We start the proof by showing, in Step 1, that the random bounds on posterior

means converge to m and m asymptotically. Then, we show that the latter are

indeed asymptotic bounds of posterior means, proving part 1 of the Theorem in

Step 2.

Step 1. mN
a.s.−−→m and mN

a.s.−−→m

Step 1.1. m =
ρ
∫ m
−∞ sa(x,ρ)dF(x)+ρ

∫∞
m

sa(x,ρ)dF(x)

ρF(m)+ρ(1−F(m))
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By the proof of Lemma 2,m is solved by a threshold strategy. We can then write

the optimization that determines it by:

m = argmax
a∈R
{v(a)} ,

where v(a) =
ρ
∫ a
−∞ sa(x,ρ)dF(x)+ρ

∫∞
a

sa(x,ρ)dF(x)

ρF(a)+ρ(1−F(a)) .

The first order condition leads to:

m =
ρ
∫ m
−∞ sa(x,ρ)dF(x) + ρ

∫∞
m

sa(x,ρ)dF(x)

ρF(m) + ρ (1−F(m))

which implicitly defines the value m that solves that maximization. We show that

the objective function is single-peaked, so that the first order condition is neces-

sary and sufficient. The first derivative of v can be written as:

v′(a) = (v(a)− a)
(ρ̄ − ρ)f (a)

ρF(a) + ρ̄ (1−F(a))

First, notice that because the second term is positive for all a ∈ R, the sign of

v′ is determined by v(a) − a. This immediately implies v is quasiconcave: if there

is a such that v′(a) > 0, then v′(a) > 0 for all a ≤ a; similarly, if there is a such that

v′(a) < 0, then v′(a) < 0 for all a ≥ a. We prove the second, the first follows by

symmetry. Assume there is a such that v′(a) < 0 and, to obtain a contradiction, let

there be a > a with v′(a) > 0. Since v′ is continuous, there must be a < b < a with

v′(b) = 0, which implies v(b) = b. Choose the smallest such b > a, so for a ≤ x < b,

v′(x) < 0. We then have:

0 = v(b)− b < v(b)− a = v(a)− a+
∫ b

a
v′(x)dx < 0

since v′(a) < 0 implies v(a) < a. We have thus obtained a contradiction.

Because v is quasiconcave, the first order condition is necessary and sufficient.

We now prove that the solution exists and is unique.

As a→−∞, v(a)→
∫∞
−∞xf (x)dx, as all signals are assigned precision ρ, leading
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to uniform weighting. Because we know F has a finite mean, that implies that we

can find a sufficiently small number a such that v(a) − a > 0, implying v′(a) > 0.

Notice that the same should be true for all a ≤ a, so that v is an increasing function

in (−∞, a].
On the other hand, as a → ∞, again we have v(a) →

∫∞
−∞xf (x)dx, this time

because all signals are receiving precision ρ. Then, there is a sufficiently high

number a with v(a)− a < 0, so v′(a) < 0 for all a ≥ (a).

Because v′ is continuous, there is a∗ ∈ [a,a] with v′(a∗) = 0, so the solution exists.

We now prove uniqueness. Let a′ satisfy v′(a′) = 0, and let a′ > a∗ without loss of

generality. By the quasiconcavity argument above, v′(x) = 0 for all x ∈ [a∗, a′]. Then:

0 = v(a′)− a′ < v(a′)− a∗ = v(a∗)− a∗ +
∫ a′

a∗
v′(x)dx = 0

again, yielding a contradiction. Therefore a∗ is unique. This concludes Step 1.1

By symmetry, we have the definition of m.

Step 1.2. Approximating mN using a threshold. In this step we show how to

approximate the expectationmN by the expectation generated by a threshold strat-

egy as N grows large. For any realization of actions, aN , let FN be the associated

empirical distribution of actions. We then define:

m̃N = max
a∈R

ρ
∫ a
−∞ sa(x,ρ)dFN (x) + ρ

∫∞
a

sa(x,ρ)dFN (x)

ρFN (a) + ρ (1−FN (a))

Call the objective function of the problem above Ψ N (a). At the same time,

using the proof of Lemma 2 without assuming the distribution of observables is

non-atomic, we obtain that mN can be obtained by an assignment that is a thresh-

old except for possibly one of the observables receiving an intermediate precision.

Thus, we can find mN through the alternative optimization:

mN = max
a,ρ∈[ρ,ρ]

ρ
∫ a−
−∞ sa(x,ρ)dFN (x) + ρsa(a,ρ)(FN (a)−FN (a−)) + ρ

∫∞
a

sa(x,ρ)dFN (x) +
ρµ
N µ

ρFN (a−) + ρ(FN (a)−FN (a−)) + ρ (1−FN (a)) +
ρµ
N


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We call the objective function above Ψ̃ N (a,ρ). We next prove supa∈R,ρ∈[ρ,ρ] |Ψ̃ N (a,ρ)−

Ψ N (a)| a.s−−→ 0. To see that, notice that for almost all sequences a, it must be that

supa
{
FN (a)−FN (a−)

}
≤ 1

N . Applying that, the uniform convergence result is di-

rect.

Denote

Ψ (a) =
ρ
∫ a
−∞ sa(x,ρ)dF(x) + ρ

∫∞
a

sa(x,ρ)dF(x)

ρF(a) + ρ (1−F(a))
.

where F is, again, the true distribution of observables.

Step 1.3. supa∈R |ΨN(a)−Ψ(a)| a.s.−−→ 0 Given the Glivenko–Cantelli theorem, we

know the empirical distribution function converges to the true cumulative distri-

bution function uniformly over x, that is,

‖FN −F‖ := sup
x∈R
|FN (x)−F(x)| a.s.−−→ 0.

For each real-valued function v, denote

FN (v) =
∫
vdFN , F(v) =

∫
vdF.

A class of real-valued functions V is defined to be a P-Glivenko-Cantelli class of
functions if

‖FN −F‖V := sup
v∈V
|FN (v)−F(v)| a.s.−−→ 0.

Recall that the L1(F) norm is defined for real-valued functions such that

‖v‖L1(F) =
∫
|v|dF.

Given two real-valued functions l and u and ε > 0, a ε-bracket [l,u] is the set

of all functions f such that l ≤ f ≤ u and ‖u − l‖L1(F) ≤ ε. The bracketing number
N (ε,V ,‖ · ‖L1(F)) is the minimum number of ε-brackets needed to cover V . The

following theorem provides a sufficient condition for a P-Glivenko-Cantelli class.

Theorem 3. ( (Blum, 1955; DeHardt, 1971)) If N (ε,V ,‖ · ‖L1(F)) < ∞ for any ε > 0,
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then V is a P-Glivenko-Cantelli class.

Denote

V1 =
{
va1 : va1(x) = ρ1{x≤a} + ρ1{x>a},∀x ∈ R, for some a ∈ R

}
.

V2 =
{
va2 : va2(x) = ρx1{x≤a} + ρx1{x>a},∀x ∈ R, for some a ∈ R

}
.

Easy to see

Ψ N (a) =
FN (va2)
FN (va1)

, Ψ (a) =
F(va2)
F(va1)

.

Then we want to show that V1 and V2 are both P-Glivenko-Cantelli classes.

Note that F is a continuous distribution whose expectation is well-defined, that is,∫
|x|dF <∞.

Fix ε > 0. For any a > b, the L1(F)-distance between va1 and vb1 is

‖va1 − v
b
1‖L1(F) = (ρ − ρ)

∫ a

b
dF(x).

Since
∫∞
−∞dF(x) = 1, for M large enough, we can find a finite increasing sequence

{a1, ..., aM} on the extended real line such that a1 = −∞, aM =∞ and∫ ai+1

ai

dF(x) =
1

M − 1
≤ ε
ρ − ρ

,∀i = 1, ...,M − 1

This is feasible as F is a continuous distribution. Then it is easy to show that the set

of ε-brackets {[vai1 ,v
ai+1
1 ] : i = 1, ...,M−1} covers V1 andN (ε,V1,‖·‖L1(F)) ≤M−1 <∞.

Hence V1 is a P-Glivenko-Cantelli class.

Similarly, for any a > b, the L1(F)-distance between va2 and vb2 is

‖va2 − v
b
2‖L1(P ) = (ρ − ρ)

∫ a

b
|x|dF(x).

Since
∫
|x|dF < ∞ and F is continuous, for M ′ large enough, again we can fine

a finite increasing sequence {b1, ...,bM ′ } on extended real line such that b1 = −∞,
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bM ′ =∞ and ∫ bi+1

bi

|x|dF(x) =

∫
|x|dF
M ′ − 1

≤ ε
ρ − ρ

,∀i = 1, ...,M ′ − 1.

Then it is easy to show that the set of ε-brackets {[vbi2 ,v
bi+1
2 ] : i = 1, ...,M ′ − 1}

covers F2 and N (ε,V2,‖ · ‖L1(F)) ≤ M ′ − 1 < ∞. Hence V2 is a P-Glivenko-Cantelli

class.

The definition of the P-Glivenko-Cantelli class implies that

‖FN −F‖V1
= sup
v∈V1

|FN (v)−F(v)| = sup
a∈R
|FN (va1)−F(va1)| a.s.−−→ 0. (1)

‖FN −F‖V1
= sup
v∈V1

|FN (v)−F(v)| = sup
a∈R
|FN (va1)−F(va1)| a.s.−−→ 0. (2)

Now we can show the convergence of Ψ N .

sup
a∈R
|Ψ N (a)−Ψ (a)| = sup

a∈R
|
FN (va2)
Fn(va1)

−
F(va2)
F(va1)

|

≤ sup
a∈R
|
FN (va2)
FN (va1)

−
FN (va2)
F(va1)

|+ sup
a∈R
|
FN (va2)
F(va1)

−
F(va2)
F(va1)

|

≤ sup
a∈R
|

FN (va2)
F(va1)FN (va1)

||FN (va1)−F(va1)|+ sup
a∈R

1
|F(va1)|

|FN (va2)−F(va2)|

≤ sup
a∈R
|

FN (va2)
F(va1)FN (va1)

|sup
a∈R
|FN (va1)−F(va1)|+ sup

a∈R

1
|F(va1)|

sup
a∈R
|FN (va2)−F(va2)|.

Notice that 0 < ρ ≤ F(va1) ≤ ρ <∞ and 0 < ρ ≤ FN (va1) ≤ ρ <∞ for each N . That

is, F(va1) and FN (va1) are uniformly bounded away from 0 and∞. Also, by applying

strong law of large numbers,

sup
a∈R
|FN (va2)| ≤ (ρ+ ρ)

∫
|x|dFN a.s.−−→ (ρ+ ρ)

∫
|x|dF < +∞.
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By equations 1 and 2, we know

sup
a∈R
|Ψ N (a)−Ψ (a)| a.s.−−→ 0.

Step 1.4. mN
a.s.−−→ m This result follows directly from the following standard

results about consistency ofM- estimators. We include the proof for completeness.

Lemma 3. Suppose that

1. supa∈R,ρ∈[ρ,ρ] |Ψ̃ N (a,ρ)−Ψ (a)| a.s.−−→ 0,

2. mN ∈ argmaxa∈R,ρ∈[ρ,ρ] Ψ̃
N (a,ρ) for each N ,

3. m = argmaxa∈RΨ (a) is the unique maximum of Ψ ,

Then mN
a.s.−−→m.

Proof of Lemma 3. We ignore the argument ρ throughout the proof without loss

of generality. By conditions (2) and (3), we know Ψ̃ N (mN ) ≥ Ψ̃ N (m) and Ψ (m) ≥
Ψ (mN ) for each N . Using these inequalities we have

Ψ̃ N (mN )−Ψ (mN ) ≥ Ψ̃ N (mN )−Ψ (m) ≥ Ψ̃ N (m)−Ψ (m)

Therefore from the above we have

|Ψ̃ N (mN )−Ψ (m)| ≥max
{
|Ψ̃ N (mN )−Ψ (mN )|, |Ψ̃ N (m)−Ψ (m)|

}
≥ sup
a∈R
|Ψ̃ N (a)−Ψ (a)|

Hence by condition (1), we know |Ψ̃ N (mN ) − Ψ (m)| a.s.−−→ 0. Finally, suppose by

contradiction that mN does not converge to m almost surely. Then there exists an

event M with positive probability such that for all ω ∈ M, mN (ω) 9 m(ω). As

m is the unique minimum of Ψ by condition (3), Ψ̃ (mN (ω)) 9 Ψ (m(ω)). Again

condition (1) implies that |Ψ̃ N (mN ) − Ψ (mN )| a.s.−−→ 0. Hence we know that there

exists M ′ ⊆ M with positive probability such that for all ω ∈ M ′, Ψ̃ N (mN (ω)) 9
Ψ (m(ω)), which contradicts with |Ψ̃ N (mN ) −Ψ (m)| a.s.−−→ 0. Thus, we have mN

a.s.−−→
m.
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Now it suffices to show that the conditions in Lemma 3 holds in our case. Con-

dition (1) is shown in Step 1.2 and 1.3. Explicitly: supa,ρ |Ψ̃ N (a,ρ)−Ψ (a)| a.s−−→ 0 and

supa |Ψ N (a)−Ψ (a)| a.s.−−→ 0 imply that condition. Condition (2) holds by the defini-

tion of mN . Condition (3) is shown in the proof of Step 1.1. This completes the

proof for mN
a.s.−−→m. The same arguments apply for showing mN

a.s.−−→m.

Step 2. Part 1 of Theorem — Boundedness of belief means. For any N , with

observables aN and conjectured precisions ρ̂N , recall we have:

θ|sN , ρ̂N ∼
∑N

i=1 ρ̂is
a(ai , ρ̂i) + ρµµ∑N

i=1 ρ̂i + ρµ
,
(
1−

∑N
i=1 ρ̂i∑N

i=1 ρ̂i + ρµ

) 1
ρµ

 (3)

Since ρ̂i ≥ ρ > 0, it is clear that limN→∞

∑N
i=1 ρ̂i∑N

i=1 ρ̂i+ρµ
= 1, so the variance converges

to zero for all sequences of signal realizations.

As for the posterior mean, notice that, by definition of mN , mN :

mN ≤
∑N
i=1 ρ̂is

a(ai , ρ̂i) + ρµµ∑N
i=1 ρ̂i + ρµ

≤mN

By taking limit inferior in the first inequality above and limit superior in the

second, we obtain, using the result in Step 2, that for almost all sequences of signal

realizations, the asymptotic bounds on expected values hold.

Step 3. Part 2 of Theorem —Limit Set of Posteriors Fix a sequence of realiza-

tions a. We want to characterize the set of distributions the posterior beliefs of the

decision-maker converge to, P∞(a). By 3, it is clear that a necessary condition for

weak convergence is that the posterior mean
∑N
i=1 ρ̂is

a(ai ,ρ̂i )+ρµµ∑N
i=1 ρ̂i+ρµ

converges. We can

then focus on sequences with converging means. Define b = limN→∞

∑N
i=1 ρ̂is

a(ai ,ρ̂i )+ρµµ∑N
i=1 ρ̂i+ρµ

.

We can write the characteristic function of PN (sN , ρ̂N ) as:

ϕN (t) = e
it

{∑N
i=1 ρ̂is

a(ai ,ρ̂i )+ρµµ∑N
i=1 ρ̂i+ρµ

− 1
2

(
1−

∑N
i=1 ρ̂i∑N

i=1 ρ̂i+ρµ

)
1
ρµ

}
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By Step 3, the variance converges to zero. We then have, for all t:

ϕN (t)→ eit b

which is the characteristic function of δb. Then, by Levy’s continuity theorem:

PN (sN , ρ̂N )
w−→ δb.

We finally show that any b ∈ [m,m] can be achieved. For that, fix a threshold

assignment ρ : R → {ρ,ρ}. Then {ρ(ai)sa(ai ,ρ(ai))}i=1,... is a sequence of indepen-

dent signals with uniformly bounded variance. Then, by the strong law of large

numbers:∑N
i=1ρ(si)sa(ai ,ρ(ai)) + ρµµ∑N

i=1ρ(si) + ρµ
=
N

∫
ρ(x)sa(x,ρ(x))dFN (x) + ρµµ

N
∫
ρ(x)dFN (x) + ρµ

a.s.−−→

∫
ρ(x)sa(x,ρ(x))dF(x)∫

ρ(x)dF(x)

We finish this step by showing that by appropriately choosing the function

ρ,
∫
ρ(x)sdF(x)∫
ρ(x)dF(x)

can achieve any point between m and m. To see that, recall that

m = maxaΨ (a). It should be clear that µ = minaΨ (a). Since Ψ is continuous,

by choosing different a’s any number in [µ,m] can be achieved. Because any a cor-

responds to a particular threshold assignment ρ, this means that
∫
ρ(x)sa(x,ρ(x))dF(x)∫

ρ(x)dF(x)

can achieve any value in [µ,m]. With the symmetric argument for m we obtain the

result and complete Step 3.

Proof of Theorem 2

Define

ΓN (g) ≡ max
p∈Pa(aN )

Ep [u(g −θ)]

By definition, assuming that the limits exist, we have:

lim
N→∞

g∗(sN ) = lim
N→∞

argmin
g

ΓN (g).

Also denote

Γ (g) = max{u(g −m),u(g −m)}

where m and m are defined in Theorem 1.
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We start with introducing an auxiliary problem with finitely many signals by

ignoring the effect of any moment of the posterior distribution that is not the mean.

Explicitly:

Γ̃N (g) ≡ max
p∈Pa(aN )

u(g −Ep[θ]) = max {u(g −m),u(g −m)}

where m and m are defined in Theorem 1 and the equality follows from the fact

that u is convex.

The result of the proposition is a consequence of the following lemma.

Lemma 4. Let f N be a sequence of random mappings such that xN ∈ argminx∈R f N (x),
for all N ∈ N. Assume there is another random mapping f and that the following are
satisfied:

1. supx∈C |f (x)− f N (x)| a.s−−→ 0, as N →∞, for all compact sets C ⊂ R.

2. x∗ ∈ argminx∈R f (x) is the unique minimum of f .

3. The sequence xN is uniformly bounded almost everywhere.

Then xN
a.s−−→ x∗.

Proof of Lemma 4. By condition (3), there exists an event M with P(M) = 1 such

that for allω ∈M, there is a compact setC(ω) ⊆ R with {xN (ω)}N≥1∪{x∗(ω)} ⊆ C(ω).

By condition (1), we can find M ′ ⊆ M with P(M ′) = 1 such that for all ω ∈ M ′,
supx∈C(ω) |f (x) − f N (x)| → 0. Easy to see that x∗ is the unique minimum of f on

C(ω) and xN is a minimum of f N on C(ω). Following the same proof of Lemma 3,

we know for all ω ∈M ′, xN (ω)→ x∗(ω), which implies xN
a.s−−→ x∗.

In the remainder of this proof, we aim to show that ΓN , Γ , gN ≡ g∗(sN ) and

g∗ solving u(g∗ −m) = u(g∗ −m) satisfy the conditions of Lemma 4. We do so in

three steps, one for each condition in the lemma. This allows us to obtain that

g∗(sN )
a.s−−→ g∗.

Step 1. supg∈C |Γ(g)−ΓN(g)| a.s.−−→ 0, as n→∞, for all compact sets C ⊂ R
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Step 1.1. supg∈R |Γ̃N(g)−ΓN(g)| a.s.−−→ 0
We start by using the auxiliary function Γ̃N . As N grows to infinity, the gap

between ΓN and Γ̃N shrinks uniformly. We prove this statement next. Start by

noticing that, for fixed P N , for any p ∈ Pa(aN ):

ΓN (g) ≥ Ep [u(g −θ)] ≥ u
(
g −Ep[θ]

)
where we use convexity of u for the second inequality. Then, by taking max

over p ∈ Pa(aN ) we obtain Γ̃N (g) ≤ ΓN (g).

Now, for each g, θ̃ and q ∈ [m,m], Taylor’s rule implies existence ofω(g, ˜theta,q):

u(g − θ̃) = u (g − q) +u′(g −ω(g, θ̃,q))
(
θ̃ − q

)
By the implicit function theorem, ω(·,θ, ·) is a differentiable, and thus continu-

ous function.

Now, if there exists p ∈ Pa(aN ) with Ep[θ] = q, we can take expectations with

respect to p in the above equation to obtain:

Ep[u(g − θ̃)] = u(g −Ep[θ]) +Ep
[
u′(g,ω(g, θ̃,Ep[θ]))

(
θ̃ −Ep[θ]

)]
We can then use subadditivity of the max operator to obtain:

ΓN (g) ≤ max
p∈Pa(aN )

u(g −Ep[θ]) + max
p∈Pa(aN )

E
[
u′

(
g −ω(g, θ̃,Ep[θ])

)(
θ̃ −Ep[θ]

)]
= Γ̃N (g) + max

p∈Pa(aN )
E
[
u′

(
g −ω(g, θ̃,Ep[θ])

)(
θ̃ −Ep[θ]

)]
Now, fix a compact set C. Define v(θ̃) = maxg∈C,q∈[m,m]u

′
(
g −ω(g, θ̃,q)

)
. Which

is guaranteed to be well-defined by continuity of u′ and ω. We then have:

0 ≤ ΓN (g)− Γ̃N (g) ≤ max
p∈Pa(aN )

Ep
[
v(θ̃)

(
θ̃ −Ep[θ]

)]
Notice that neither bound depends on g within this compact set. On top of

that, the upper bound converges to zero. To see that, recall that all signals are in-

formative - ρ > 0. That implies every pN ∈ Pa(aN ) have an almost-sure convergent
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subsequence to a degenerate distribution. Therefore, θ̃ −Ep[θ]→ 0 almost surely.

That implies:

sup
g∈C
|ΓN (g)− Γ̃N (g)| a.s.−−→ 0

Step 1.2. supg∈C |Γ(g)− Γ̃N(g)| a.s.−−→ 0, as n→∞, for all compact sets C ⊂ R
Recall that we can write Γ̃N (g) = max{u(g −mN ),u(g −mN )}. Also by Theorem

1, mN
a.s.−−→m and mN

a.s.−−→m.

We use the following lemma:

Lemma 5. Let f N , gN , f ,g for N ∈ N be functions from D ⊂ R into the reals, and let
hN = max{f N , gN } and h = max{f ,g}. If supx |f N − f | → 0 and supx |gN −g | → 0 then,
supx |hN − h| → 0.

Proof. For any fixed ε there exist Nf and Ng such that, for all x ∈D:

|f N (x)− f (x)| < ε if N ≥Nf

|gN (x)− g(x)| < ε if N ≥Ng

Take N ≥ Ñ = max{Nf ,Ng}. We then have:

h(x) ≤ (f N (x) + ε)1f (x)≥g(x) + (gN (x) + ε)1g(x)≥f (x)

≤ hN (x) + ε

where the second inequality comes from the definition of hN . By the same logic,

inverting the roles of h and hN :

hN (x) ≤ (f (x) + ε)1f N (x)≥gN (x) + (g(x) + ε)1gN (x)≥f N (x)

≤ h(x) + ε

By joining the two inequalities above: |h(x)− hN (x)| ≤ ε for all N ≥ Ñ . Because

x is arbitrary, we have our result.

In order to apply the result above, notice that supg∈C |u(g − x) − u(g − y)| is a

continuous function of x and, thus, converges to 0 as x → y. Thus, supg∈C |u(g −
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mN )− u(g −m)| a.s.−−→ 0 and similarly supg∈C |u(g −mN )− u(g −m)| a.s.−−→ 0. Therefore,

applying the above lemma, defining f N (x) = u(x−mN ) and gN (x) = u(x−mN ) gives

us our result.

Step 1.3. supg∈C |Γ(g)−ΓN(g)| a.s.−−→ 0, as n→∞, for all compact sets C ⊂ R.
This is directly implied by the previous two steps.

Step 2. g∗ such that u(g∗ −m) = u(g∗ −m) is the unique minimum of Γ .

Recall that Γ (g) = max{u(g −m),u(g −m)}. First, notice that g∗ that minimizes Γ

must be in [m,m]. Assume, for a contradiction, that minΓ (g) = u(g∗−m) > u(g∗−m).

By continuity of u, we can choose m < g ′ < g∗ such that u(g ′ −m) > u(g ′ −m), that is,

Γ (g ′) = u(g ′ −m). Because u is strictly convex and minimized at 0, it must be that

u(g∗ −m) > u(g ′ −m). But then, Γ (g ′) < Γ (g∗), which is a contradiction. A similar

contradiction is found if we assume minΓ (g) = u(g∗ −m) < u(g∗ −m). Thus, the

equality must hold.

Step 3. The sequence gN is uniformly bounded almost everywhere .

For an observable realization aN , recall that mN = minp∈Pa(aN )E[θ] and, sym-

metrically, mN = maxp∈Pa(aN )E[θ]. Assume, for a contradiction, that there is an

event M with probability 1, such that gN is unbounded. If that’s the case, up to a

subsequence, we have: gN > N . Then, by strict convexity of u we have:

Γ (gN ) = max
p∈Pa(aN )

Ep[u(gN −θ)] ≥ max
p∈Pa(aN )

u(gN −Ep[θ]) ≥ u(gN −mN )

Now, because mN
a.s.−−→m, we can choose an event M ′ ⊂M, also with probability

one, in which mN . That implies, with the unboundedness of gN and strict con-

vexity of u, that the lower bound above diverges, so Γ (gN ) is unbounded. To show

that gN cannot be optimal, it suffices to show that there is a sequence xN such that

Γ (xN ) is bounded in this event. For any real a, take the sequence xN = a for all N .

Because ΓN
a.s.−−→ Γ uniformly in any compact set, we have that, for a further event
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M ′′ ⊂M ′, with probability 1, that for any ε, for sufficiently large N ,

ΓN (a) < Γ (a) + ε

Thus, ΓN (a) is a bounded sequence, proving that, for sufficiently large N :

ΓN (a) < ΓN (gN )

which is the contradiction that we were seeking.

Proof of Corollary 1

Define

ζ(m) =
ρ
∫ m
−∞xdF(x) + ρ̄

∫∞
m
xdF(x)

ρF(m) + ρ̄ (1−F(m))
, ζ(m) =

ρ
∫ m
−∞xdF(x) + ρ

∫∞
m
xdF(x)

ρF(m) + ρ (1−F(m))

Clearly, ζ(m) =m and ζ(m) =m. Because F is symmetric around θ, for m ∈ R:

ζ(2θ−m) =
ρ
∫ 2θ−m
−∞ xdF(x) + ρ̄

∫∞
2θ−mxdF(x)

ρF(2θ −m) + ρ̄ (1−F(2θ −m))
= 2θ−

ρ
∫ m
−∞xdF(x) + ρ

∫∞
m
xdF(x)

ρF(m) + ρ (1−F(m))
= 2θ−ζ(m)

Then, 2θ −m = 2θ − ζ(m) = ζ(2θ −m). But because m is the unique fixed point

of ζ:11 m = 2θ −m, and we are done.

Proof of Proposition 1

m(m) monotonically increases(decreasing) in η We go through the proof for m,

a symmetric argument holds for m. Define kη(a) as

kη(a) ≡ E[θ](a) =
ρ
∫ a
−∞xf (x)dx+ ρ

∫∞
a
xf (x)dx

ρF(a) + ρ (1−F(a))
=

∫ a
−∞xf (x)dx+ η

∫∞
a
xf (x)dx

F(a) + η (1−F(a))

11See the Proof of Theorem 1
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For convenience we can rewrite kη(a) as

kη(a) =
F(a)E[x|x < a] + η(1−F(a))E[x|x ≥ a]

F(a) + η(1−F(a))

We know that

m = argmax
a∈R

kη(a) and m = max
a∈R

kη(a)

Then, via the envelope theorem we have

dm
dη

=
dkη(m)

dη
=

F(m)(1−F(m))

(F(m) + η(1−F(m)))2 (E[x|x ≥m]−E[x|x < m]) > 0

Step 1. As η→ +∞(−∞), m→∞(m→−∞). First note that

lim
η→∞

kη(a) = E[x|x ≥ a] > a

The last inequality follows from the full support of the distribution. For any z ∈ R
we want to show that ∃ η̃ such that kη̃(m) ≥ z. From the above limit, we know that

∃η̃ such that kη̃(z) > z. Becausem = argmaxa∈R kη(a) we know that kη̃(m) ≥ kη̃(z) > z.

Step 2. As η → 1, m −m→ 0. When η → 1, kη(a) reduces to the unconditional

expected value for any a. Similarly, the optimization problem that determines m

reduces to the unconditional expected value, completely unaffected by a. Thus, as

η→ 1 both m and m converge to the unconditional expectation.

Proof of Proposition 2

Fix any η > 1 and C > 0 and consider the family of distributions over precisions

Gρ = δρ, ρ > 0. Given the state, the real signals are distributes according to s ∼
N (θ, 1

ρ ). Let Fρ be the distribution of s.

We use kη as defined in the Proof of Proposition 1, but we call it kρ here, as we

are interested in precisions instead. We can then use the formula for conditional
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means of normal distributions to write:

kρ(a) = θ +
1
ρ (η − 1)fρ(a)

Fρ(a) + η(1−Fρ(a))

For each a, as ρ converges to 0, the denominator converges to 1+η
2 , while the

numerator converges to infinity. Because mρ = maxa kρ(a), there is a sufficiently

low ρ so that mρ is arbitrarily large. A similar argument can be made for mρ. Now,

by Example 2, we have that:

g∗ =
mρ +λmρ

1 +
√
λ

Thus, |g∗ −θ| =
|1−
√
λ|(mρ−mρ)

1+
√
λ

that can be made arbitrarily large for ρ sufficiently

close to zero, which concludes our proof. Note that, although this result was

proved using a degenerate G, it can easily be extended to continuous G’s.

Proof of Proposition 3

We go through the proof form, a symmetric argument holds form. From Theorem

2 we know that

m =
ρ
∫ m
−∞ sa(x,ρ)dF(x) + ρ

∫∞
m

sa(x,ρ)dF(x)

ρF(m) + ρ (1−F(m))

Where sa(x,ρ) is the inverted signal given action x and conjectured precision ρ,

and F(x) is the distribution of the observables. In the observable actions case the

inverted signal is simply sa (ai , ρ̂i) = ai+
ρµ
ρ̂i

(ai−µ), thus the above equation becomes

ma =
ρ
∫ ma
−∞

(
x+

ρµ
ρ (x −µ)

)
dF(x) + ρ

∫∞
ma

(
x+

ρµ
ρ (x −µ)

)
dF(x)

ρF(ma) + ρ̄ (1−F(ma))

=
ρ
∫ ma
−∞xdF(x) + ρ

∫∞
ma
xdF(x) +

∫∞
−∞ρµ(x −µ)dF(x)

ρF(ma) + ρ̄ (1−F(ma))
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Recall that actions are a(si ,ρi) =
ρµµ+ρisi
ρµ+ρi

, where ρi is the true not conjectured pre-

cision of the agent. Thus, given ρi the expected value of the observable is
ρµµ+ρiθ
ρmu+ρi

,

since the signals normally distributed around θ. Recall from the setup that

F(x) =
∫

[ρ,ρ]
Fρ

(
sa(x,ρ)

)
dG(ρ)

Leading to ∫ ∞
−∞
ρµ(x −µ)dF(x) = (θ −µ)

∫
ρρµ
ρµ + ρ

dG(ρ) = c

Proof of Proposition 4

Recall from Proposition 2 that the bounds of the limiting posterior set are given

by

ma =
ρ
∫ ma
−∞xdF(x) + ρ̄

∫∞
ma
xdF(x) + c

ρF(ma) + ρ̄ (1−F(ma))
, ma =

ρ
∫ ma
−∞xdF(x) + ρ

∫∞
ma
xdF(x) + c

ρF(ma) + ρ (1−F(ma))
(4)

where c =
ρρµ
ρµ+ρ (θ −µ).

The optimal guess is ma = ma+ma
2 . When θ = µ, c = 0 and by Corollary 1 ma =

θ = µ and the observer guesses correctly. From now on, we first focus on the case

where θ > µ.

Denote G(z) = ρF(z)+ ρ̄ (1−F(z)) and G(z) = ρF(z)+ρ (1−F(z)). Rearranging the
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first equation and using integration by parts, we get

maG(ma) = ρ
(
xF(x)

∣∣∣ma−∞ −∫ ma

−∞
F(x)dx

)
+ ρ

(
−x (1−F(x))

∣∣∣∞
ma

+
∫ ∞
ma

(1−F(x))dx
)

+ c

= ρ
(
maF(ma)−

∫ ma

−∞
F(x)dx

)
+ ρ

(
ma (1−F(ma)) +

∫ ∞
ma

(1−F(x))dx
)

+ c

=maG(ma)−
(
ρ

∫ ma

−∞
F(x)dx − ρ

∫ ∞
ma

(1−F(x))dx
)

+ c.

This implies

ρ

∫ ma

−∞
F(x)dx − ρ

∫ ∞
ma

(1−F(x))dx = c. (5)

A symmetric argument for ma shows that

ρ

∫ ma

−∞
F(x)dx − ρ

∫ ∞
ma

(1−F(x))dx = c. (6)

Taking the derivative with respect to the state θ on both sides of equation 5 and

equation 6, we get

dma
d θ

=
ρ

ρµ + ρ
+

ρµ
ρµ + ρ

ρ

G(ma)

dma
d θ

=
ρ

ρµ + ρ
+

ρµ
ρµ + ρ

ρ

G(ma)

The derivative of the optimal guess ma = ma+ma
2 with respect to θ is then:

dma
dθ

=
ρ

ρµ + ρ
+

ρµ
ρµ + ρ

ρ

2

(
1

G(ma)
+

1
G(ma)

)
(7)

Recall that H is normally distributed and denote its density function as h.

Then, we can use the derivative of the optimal bounds obtained above to calcu-
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late:

dF(ma)
dθ

=
∂F(ma)
∂ma

dma
dθ

+
∂F(ma)
∂θ

= −
ρµ

ρµ + ρ
ρ

G(ma)
f (ma)

dF(ma)
dθ

=
∂F(ma)
∂ma

dma
dθ

+
∂F(ma)
∂θ

= −
ρµ

ρµ + ρ
ρ

G(ma)
f (ma)

It then follows that

d2ma
dθ2 =

ρ − ρ
2

(
ρρµ
ρµ + ρ

)2
 f (ma)

G
3
(ma)

−
f (ma)

G3(ma)


=
ρ − ρ

2

(
ρρµ
ρµ + ρ

)2
( f (ma)

G(ma)
−
f (ma)
G(ma)

)
1

G2(ma)
+
f (ma)

G(ma)

 1

G
2
(ma)

− 1

G2(ma)


 .

Lemma 6.
(

1
G

2
(ma)
− 1
G2(ma)

)
> 0 whenever θ > µ

Proof. The statement is equivalent to G(ma) > G(ma), which is also equivalent

to F(ma) + F(ma) > 1. Since H is symmetric around
ρθ+ρµµ
ρ+ρµ

, the latter is true if and

only if ma >
ρθ+ρµµ
ρ+ρµ

. We show that this is the case. Define

ζ(z,u) =
ρ
∫ z
−∞xdF(x) + ρ̄

∫∞
z
xdF(x) +u

ρF(z) + ρ̄ (1−F(z))
, ζ(z,u) =

ρ
∫ z
−∞xdF(x) + ρ

∫∞
z
xdF(x) +u

ρF(z) + ρ (1−F(z))

(8)

We know ma = ζ(ma, c), and it was previously proved that ma maximizes ζ(ma, c).

By the envelope theorem we have:

dζ(ma, c)
du

=
∂ζ(ma, c)
∂u

=
1

ρF(ma) + ρ̄ (1−F(ma))
> 0

A similar argument implies that
ζ(ma,u)
du > 0, for all u ∈ R. Finally, by an equivalent

argument to the proof of Corollary 1, we have
ζ(ma,0)+ζ(ma,0)

2 =
∫
xdH =

ρθ+ρµµ
ρ+ρmu

.

45



Then, if θ > µ - which implies c > 0:

ma =
ma +ma

2
=
ζ(ma, c) + ζ(ma, c)

2
>
ζ(ma,0) + ζ(ma,0)

2

This concludes the proof of the lemma.

Therefore, (
f (ma)

G(ma)
−
f (ma)
G(ma)

)
≥ 0 =⇒ d2ma

dθ2 > 0. (9)

We next consider the partial derivative of the optimal guess with respect to ρ.

We start with an alternative implicit function of ma and ma. Notice that if f as

the density function of a normal distribution with mean µ̃ and variance σ̃2, then
∂f (x)
∂x = −x−µ̃

σ̃2 f (x). This implies xf (x) = µ̃f (x)− σ̃2 ∂f (x)
∂x . Plugging this into the initial

implicit functions 4, we get

ma =
ρµµ+ ρθ

ρµ + ρ
+

c

G(ma)
+ (ρ − ρ)

ρ

(ρµ + ρ)2
f (ma)

G(ma)
,

ma =
ρµµ+ ρθ

ρµ + ρ
+

c
G(ma)

− (ρ − ρ)
ρ

(ρµ + ρ)2

f (ma)
G(ma)

.

By definition of ma, we have

ma = θ + (θ −µ)
(
dma
dθ
− 1

)
+

(ρ − ρ)ρ

2(ρµ + ρ)2

(
f (ma)

G(ma)
−
f (ma)
G(ma)

)
. (10)

Based on the implicit function theorem, we can calculate the following deriva-

tive:

dma
dρ

=
ρµ(ma −µ) + ρ(θ −ma)

2ρ2 + 2ρµρ
+
c
2

ρµ + (ρµ + ρ)ρ

(ρµ + ρ)ρ

(
1

G(ma)
+

1
G(ma)

)
.

As θ > µ, it is easy to show that ma > µ and c > 0. This leads to the following
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result.

θ > µ and ma ≤ θ =⇒ dma
dρ

> 0. (11)

Note that the last term of dmadρ ,
(

1
G(ma)

+ 1
G(ma)

)
can be rewritten as

(
dma
dθ −

ρ
ρµ+ρ

)
ρµ+ρ
ρµ

2
ρ .

Let κ1 = 1
2ρ2+2ρµρ

and κ2 =
ρµ+(ρµ+ρ)ρ

ρµρ2 , then:

d2ma
dρdθ

= ρµκ1
dma
dθ
− ρκ1

(
dma
dθ
− 1

)
+
ρρµ
ρµ + ρ

κ2

(
dma
dθ
−

ρ

ρµ + ρ

)
+ cκ2

d2ma
dθ2 (12)

We know that dma
dθ > ρ

ρµ+ρ > 0 and when θ = µ, d2ma
dθ2 = 0. This leads to the

following result:

θ = µ and
dma
dθ
≤ 1 =⇒ d2ma

dρdθ
> 0. (13)

To make it clear that the optimal guess depends on θ and ρ, we sometimes

denotema,ma andma asma(ρ,θ),ma(ρ,θ) andma(ρ,θ). Notice that ρ̃ is determined

by forcing dma
dθ to approach 1 when θ goes to infinity, while at ˜̃ρ we have dma

dθ ( ˜̃ρ,µ) =

1.

The rest of the proof will be divided by the following lemmas. We will fix µ

and consider the case with θ ≥ µ.

Lemma 7. For any given ρ, if ma(ρ, θ̂) > θ̂ and dma
dθ (ρ, θ̂) > 1, then ma(ρ,θ) > θ for all

θ > θ̂.

Proof. Fix ρ. Assume that there exists θ̂, ma(ρ, θ̂) > θ̂ and dma
dθ (ρ, θ̂) > 1. Suppose

by contradiction that there exists some θ > θ̂ such that ma(ρ,θ) = θ. By continuity

of dma
dθ , there exists θ′ < θ′′ ∈ (θ̂,θ] where dma

dθ (ρ,θ′) = 1 and dma
dθ (ρ,θ′′) < 1. By

continuity of ma, ma(ρ,θ′) > θ′.

At θ′, equation (10) implies
(
f (ma)
G(ma)

− f (ma)
G(ma)

)
> 0, which guarantees d2ma

dθ2 (ρ,θ′) > 0.

This implies that for a neighborhood to the right of θ′, dmadθ > 1. Notice that this

holds for any θ ∈ [θ̂,θ] with dma
dθ (ρ,θ) = 1. Thus dma

dθ (ρ,θ) ≥ 1 for all θ ∈ [θ̂,θ],

which contradicts the assumption thatma(ρ,θ) = θ. As a result, we knowma(ρ,θ) >
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θ for θ > θ̂. This concludes the proof of the lemma.

Lemma 8. For any given ρ, if there exists θ∗ > µ such thatma(ρ,θ∗) = θ∗ andma(ρ,θ) <

θ for all µ < θ < θ∗, then ma(ρ,θ) > θ for θ > θ∗.

Proof. Suppose there exists θ∗ > µ such that ma(ρ,θ∗) = θ∗ and ma(ρ,θ) < θ

for µ < θ < θ∗. This implies dma
dθ (ρ,θ∗) ≥ 1. Again by equation (10), we know(

f (ma)
G(m)

− f (ma)
G(ma)

)
> 0, which leads to d2ma

dθ2 (ρ,θ∗) > 0 by (9). Then for any θ in a small

neighborhood to the right of θ∗, dmadθ (ρ,θ) > 1 and ma(ρ,θ) > θ. By Lemma 7. This

concludes the proof of the lemma and the proposition.
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