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Motivation

• Large body of literature finds a negative correlation between speed and accuracy, Fried and
Peterson (1969) , Swensson (1972), Luce et al. (1986), Ratcliff and Smith (2004), Ratcliff and
McKoon (2008), Brown et al. (2011), Reshidi et al. (2022).
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• Which can be explained by decreasing optimal-stopping thresholds in time. This has led
to multiple alternative-specifications or behavioral explanations. To name a few:
• Bias against “throwing good money after bad” Fried and Peterson (1969).
• ...
• Non-stationary time discounting; Subjective costs Brown et al. (2011).
• ...
• Unknown payment of state A and B Fudenberg et al. (2018).

• We ask: Could risk-aversion alone lead to time dependent stopping rules?
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Goals of this Paper

• Analyze the richness of optimal boundaries under risk averse utility functions.
• Provide a method which is informative of the optimal boundaries.
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Static Problem



Static Setup

There is an underlying state ω ∈ {A,B}. Unobserved by the agent; agent has a prior
P(ω = A) = p0.
Agent chooses among two alternatives a or b.
Receives a bonus x if choice matches state, no bonus otherwise.
Agent has initial wealth w.

Agent chooses how much information to acquire.
Information:

St =
{

µ̃t+ ρWt if ω = A
−µ̃t+ ρWt if ω = B

Timing: Choose t→ given information choose a or b.
Agent pays cost c · t for information collection.

u(t, a|ω = A) = u(w+ x− ct) u(t, a|ω = B) = u(w− ct)

u(·) - some concave utility function.
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Static Setup

Define µ = 2µ̃2

ρ2 . Set p0 = 1/2 for ease of exposition.

max
t

E
[
1
2

(
P
(

eSt(µ)

1+ eSt(µ)
≥ 1
1+ eSt(µ)

)
u(w+ x− ct) + P

(
eSt(µ)

1+ eSt(µ)
<

1
1+ eSt(µ)

)
u(w− ct)

)

+
1
2

(
P
(

eSt(−µ)

1+ eSt(−µ)
<

1
1+ eSt(−µ)

)
u(w+ x− ct) + P

(
eSt(−µ)

1+ eSt(−µ)
≥ 1
1+ eSt(−µ)

)
u(w− ct)

)]
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Static Information Acquisition Problem

max
t

p(t) u(w+ x− ct) + (1− p(t)) u(w− ct)

p(t) = 1
2

(
erf
(√

µt
2

)
+ 1
)

f.o.c

u(w+ x− ct)− u(w− ct)
p(t)u′(w+ x− ct) + (1− p(t))u′(w− ct)p

′(t) = c
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Wealth Independent Boundary

Proposition

t∗ is independent of w ⇐⇒ u is CARA.
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CARA

u(·) = 1− e−α(·)

α

∫ w+x−ct
w−ct u′(s)ds

p(t)u′(w+ x− ct) + (1− p(t))u′(w− ct)p
′(t) = e2αx − 1

2α (p(t)− (p(t)− 1)e2αx)p
′(t) = c

t∗(α) is implicitly defined by

µe−
µt∗
4

4
√
πµt∗

(
1
2αerfc

(√
µt∗
2

)
+ α

eαx−1

) = c

t∗ is a function of only α, x, c and µ. From the implicit function theorem ∃ α̃ > 0 such that

∂t∗
∂α

> 0 if α < α̃
∂t∗
∂α

≤ 0 if α ≥ α̃
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CARA Optimal Boundary

t*

α
α~
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Static mixed-CARA

u(·) =
∑
i

γiCARAαi(·) γi ≥ 0
∑
i

γi = 1

Without loss assume αi ≤ αi+1. Let t∗i be the arg max under CARAαi(·).

Proposition

∀w min
i
t∗i ≤ t∗(w) ≤ max

i
t∗i

lim
w→∞

t∗(w) = t∗1 lim
w→−∞

t∗(w) = t∗I

t∗(w)
{

may be quasiconcave if mini αi ≤ α̃ ≤ maxi αi
monotonically converges otherwise
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Dynamic Problem



Dynamic Setup

There is an underlying state ω ∈ {A,B}. Unobserved by the agent; agent has a prior.
Agent chooses among two alternatives a or b.
Receives a bonus x if choice matches state, no bonus otherwise.
Agent has initial wealth w.

Information arrives continuously as long as an alternative has not been chosen.
Information: Wiener process dS with drift µ̃(−µ̃) and variance ρ2 if the state is A(B).
Agent pays flow cost c for information collection.

u(a, t|ω = A) = u(w+ x− ct) u(a|ω = B) = u(w− ct)
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DDM CARA

u(·) = CARAα(·)

Ito’s lemma leads to

∂V
∂ t =

∂V
∂ θ

µ
eθ − 1
eθ + 1 + µ

∂V
∂ θ2

.

Value matching (boundary condition)

V
(
z∗(t), t

)
= p

(
z∗(t)

) 1− e−α(w+x−ct)

α
+
(
1− p

(
z∗(t)

)) 1− e−α(w−ct)

α

+Smooth pasting condition
+Initial value condition
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DDM CARA

V(θ, t|z) = 1
α

−
eαct

(
sech

(
θ
2
)
e− 1

2α(2w+x) cosh
( 1
2 (z− αx)

)
cosh

(
1
2θ
√
1− 4αc

µ

)
sech

(
1
2 z
√
1− 4αc

µ

))
α

Let z∗(α) be the value that sets ∂ V(z|θ)
∂ z = 0.

sinh

(
1
2
(
z∗ − αx

))
−
√
1− 4αc

µ
cosh

(
1
2
(
z∗ − αx

))
tanh

(
1
2 z

∗
√
1− 4αc

µ

)
= 0

z∗ is a function of only α, x, c and µ.

From the implicit function theorem

∂z∗
∂α

> 0 if α < α̃
∂z∗
∂α

≤ 0 if α ≥ α̃
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CARA Optimal Boundary

z*
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DDM mixed-CARA

u(·) =
∑
i

γiCARAαi(·) γi ≥ 0
∑
i

γi = 1

Without loss assume αi ≤ αi+1. Let Vi(z, t) be the value function for αi

∂V
∂ t =

∂V
∂ θ

µ
eθ − 1
eθ + 1 + µ

∂V
∂ θ2

.

Value matching (boundary condition)

V
(
z∗(t), t

)
= p

(
z∗(t)

) n∑
i=1

γi
1− e−αi(w+x−ct)

α
+
(
1− p

(
z∗(t)

)) n∑
i=1

γi
1− e−αi(w−ct)

α

+Smooth pasting condition
+Initial value condition
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mixed-CARA Optimal Boundary
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α
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mixed-CARA Optimal Boundary

Proposition

min
i
z∗i ≤ z∗(t) ≤ max

i
z∗i

lim
w→∞

z∗(w) = z∗1 lim
w→−∞

z∗(w) = z∗I
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Possible Desirable Features of this Setup

Paying a fixed price for information of fixed precision Example, buying a 3$ news paper.

What if we pull ct out of u(·): curvature for w and x, but pay for information in utiles.

Then, let ũ = u(w), re-normalize payments x̃ = u(w + x) − u(w).

Win: ũ + x̃ Lose: ũ

The problem reduces to the linear problem =⇒ time-independent boundaries.
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From mixed-CARA to any concave u(·)



Next Steps

• Approximate continuous, concave and increasing functions with linear combinations of
CARAs.
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Next Steps

Approximating Concave-Increasing functions

Let X ⊂ R be a compact set, and F be the space of all continuous, increasing and concave
functions f : X→ R. Define:

C =

{
f ∈ F : f(x) = −

N∑
i=1

βie−αix, (αi, βi) ∈ R+ × R
}
.

Apply Stone-Weierstrass

Lemma
C is dense in F in the uniform norm.

Proof: An application of Stone-Weierstrass.
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Next Steps

• Approximate continuous, concave and increasing functions with linear combinations of
CARAs.✓

• Prove value functions can also be approximated (operator continuity — Shiryaev).
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Next Steps

Approximating Value Functions.

Following Shiryaev (2008), define:

Tu(θ, t) = Eπu(θ1, t+ 1) Qu(θ, t) = max {u(θ, t), Tu(θ, t)} Vu(θ, t) = lim
n→∞

Qnu(θ, t).

Lemma
For any compact set X and ε > 0, let ||u− w||X < ε, then, ||Vu − Vw||X < ε.
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Next Steps

• Approximate continuous, concave and increasing functions with linear combinations of
CARAs.✓

• Prove value functions can also be approximated (operator continuity — Shiryaev). ✓
• Show compactness is not a restriction (Shiryaev).

✓
• Derive properties of boundaries for mixes of linear combinations of CARAs.
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Summary

• Concave u =⇒ rich set of boundaries.
• Structure for mixed-CARA.
• Soon: structure for any u.
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