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- Large body of literature finds a negative correlation between speed and accuracy, Fried and
Peterson (1969) , Swensson (1972), Luce et al. (1986), Ratcliff and Smith (2004), Ratcliff and
McKoon (2008), Brown et al. (2011), Reshidi et al. (2022).
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- We ask: Could risk-aversion alone lead to time dependent stopping rules?



Goals of this Paper

- Analyze the richness of optimal boundaries under risk averse utility functions.

- Provide a method which is informative of the optimal boundaries.



Static Problem




Static Setup

There is an underlying state w € {A, B}. Unobserved by the agent; agent has a prior
P(w S A) = Po.

Agent chooses among two alternatives a or b.

Receives a bonus x if choice matches state, no bonus otherwise.

Agent has initial wealth w.

Agent chooses how much information to acquire.
Information:

S at+pWe  if w=A
YT —jit+ oW if w=8

Timing: Choose t — given information choose a or b.
Agent pays cost ¢ - t for information collection.

u(t, ajw =A) = u(w+x — ct) u(t, ajw = B) = u(w — ct)

u(-) - some concave utility function.



Static Setup

Define p = zpizz. Set po = 1/2 for ease of exposition.

=

max E
t

eSi(m) 1 eSt(k) 1
2 \ Bl + e5i(n) 23 + eSin) By =Gl R T1 s < T4 s u(w — ct)

1 eSi(=n) 1 (=) 1
+ 2 P 14 eS(—k) = 14 eSi(—=n) U(W X Ct) +P 14 eSi(—=n) = 1 4 eS(—w) U(W - Ct)




Static Information Acquisition Problem

max p(t) u(w+x — ct) + (1 — p(t)) u(w — ct)

p(t) = ! (erf (gj) +1>

u(w + x — ct) — u(w — ct)
p(t)u'(w+x —ct) + (1 — p(t))u’(w — ct)
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Wealth Independent Boundary

Proposition

t* isindependent of w <= u is CARA.




CARA
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t*(«) is implicitly defined by

ut*
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t* is a function of only «, x, c and u. From the implicit function theorem 3& > 0 such that
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CARA Optimal Boundary



Static mixed-CARA

u() =Y 7iCARAq (") %=0 Y =1
i i

Without loss assume «; < ajyq. Let tf be the arg max under CARAq, (+).

Vw mint’ <t"(w) < maxt]
I I
W||_)moot (w) =1t Wgrfoot (w) =t

N may be quasiconcave if min;o; < & < max;q;
t*(w) . .
monotonically converges otherwise
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Static mixed-CARA
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Dynamic Problem




Dynamic Setup

There is an underlying state w € {A, B}. Unobserved by the agent; agent has a prior.
Agent chooses among two alternatives a or b.

Receives a bonus x if choice matches state, no bonus otherwise.
Agent has initial wealth w.

Information arrives continuously as long as an alternative has not been chosen.
Information: Wiener process dS with drift i(—fi) and variance p? if the state is A(B).
Agent pays flow cost ¢ for information collection.

u(a,tjw =A) = u(w + x — ct) u(alw = B) = u(w — ct)



DDM CARA

u() = CARAG(")

[to’s lemma leads to

v _ov e’ —1 49
ot a0ler 11 THae

Value matching (boundary condition)

_ p—o(wHx—ct) _ p—a(w—ct)
V.0 =p (1) T+ (1 p (1)

+Smooth pasting condition
+Initial value condition



DDM CARA

poct (sech ()e e 12 osh (3(z — ax)) cosh (%ﬁ/ﬁ) sech ( - %))

1
V(6 =——
(6,t12) = - -

Let z*(«) be the value that sets BV(Z‘O) =0.

sinh (% (Z* = ax)) A f1— % cosh (% (Z* = ax)) tanh <%Z* = %) =0

z* is a function of only «a;, x, c and p.

From the implicit function theorem

oz* . oz* .
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CARA Optimal Boundary




DDM mixed-CARA

u() =Y 7iCARAq, (") %>0 Y =1
i i
Without loss assume «; < aj;+. Let Vi(z,t) be the value function for «;

ov 8V ef —1 oV
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Value matching (boundary condition)

—a,(w+x ct) —a,(w ct)

V(z*(1),t) = p (2°(1)) Z%—+ Zm

+Smooth pasting condition
+Initial value condition



mixed-CARA Optimal Boundary
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mixed-CARA Optimal Boundary

minz" < Z*(t) < maxz’
1 1

- * % . * o
Wll)mooz (w) =7 W—IlTooZ (w) =2z




Possible Desirable Features of this Setup

Paying a fixed price for information of fixed precision Example, buying a 3 news paper.
What if we pull ct out of u(+): curvature for w and x, but pay for information in utiles.
Then, let i = u(w), re-normalize payments X = u(w + x) — u(w).

Win: & + X Lose: U

The problem reduces to the linear problem — time-independent boundaries.



From mixed-CARA to any concave u(-)




Next Steps

- Approximate continuous, concave and increasing functions with linear combinations of
CARAs.



Next Steps

Approximating Concave-Increasing functions

Let X C R be a compact set, and F be the space of all continuous, increasing and concave
functions f: X — R. Define:

N
C= {fe ff(X) = 72/8ieiayxa(aiaﬁf) € ]R+ XR} .

i=1
Apply Stone-Weierstrass

Lemma
Cis dense in F in the uniform norm.

Proof: An application of Stone-Weierstrass.



Next Steps

- Approximate continuous, concave and increasing functions with linear combinations of
CARAs.v

- Prove value functions can also be approximated (operator continuity — Shiryaev).

20



Next Steps

Approximating Value Functions.

Following Shiryaev (2008), define:

Tu(0,t) = Exu(6r,t +1) Qu(8, t) = max {u(6, t), Tu(6, t)} Vu(8,1) = lim Q"u(6,1).

Lemma
For any compact set X and e > 0, let ||u — w||x < g, then, ||Vy — Vi||x < e.
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Next Steps

Approximate continuous, concave and increasing functions with linear combinations of
CARAs.v

Prove value functions can also be approximated (operator continuity — Shiryaev). v/
- Show compactness is not a restriction (Shiryaev).
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Next Steps

- Approximate continuous, concave and increasing functions with linear combinations of
CARAs.v

- Prove value functions can also be approximated (operator continuity — Shiryaev). v/
- Show compactness is not a restriction (Shiryaev).v’

- Derive properties of boundaries for mixes of linear combinations of CARAs.
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- Concave U == rich set of boundaries.
- Structure for mixed-CARA.

- Soon: structure for any u.
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