Speed, Accuracy and Caution: the Timing of Choices Under Risk Aversion

Pëllumb Reshidi João Thereze
November 11, 2022

- Large body of literature finds a negative correlation between speed and accuracy, Fried and Peterson (1969) , Swensson (1972), Luce et al. (1986), Ratcliff and Smith (2004), Ratcliff and McKoon (2008), Brown et al. (2011), Reshidi et al. (2022).

- Large body of literature finds a negative correlation between speed and accuracy, Fried and Peterson (1969) , Swensson (1972), Luce et al. (1986), Ratcliff and Smith (2004), Ratcliff and McKoon (2008), Brown et al. (2011), Reshidi et al. (2022).
- Which can be explained by decreasing optimal-stopping thresholds in time.

Motivation

- Large body of literature finds a negative correlation between speed and accuracy, Fried and Peterson (1969) , Swensson (1972), Luce et al. (1986), Ratcliff and Smith (2004), Ratcliff and McKoon (2008), Brown et al. (2011), Reshidi et al. (2022).
- Which can be explained by decreasing optimal-stopping thresholds in time. This has led to multiple alternative-specifications or behavioral explanations. To name a few:
- Bias against "throwing good money after bad" Fried and Peterson (1969).
- ...
- Non-stationary time discounting; Subjective costs Brown et al. (2011).
- ...
- Unknown payment of state A and B Fudenberg et al. (2018).

Motivation

- Large body of literature finds a negative correlation between speed and accuracy, Fried and Peterson (1969) , Swensson (1972), Luce et al. (1986), Ratcliff and Smith (2004), Ratcliff and McKoon (2008), Brown et al. (2011), Reshidi et al. (2022).
- Which can be explained by decreasing optimal-stopping thresholds in time. This has led to multiple alternative-specifications or behavioral explanations. To name a few:
- Bias against "throwing good money after bad" Fried and Peterson (1969).
- ...
- Non-stationary time discounting; Subjective costs Brown et al. (2011).
- ...
- Unknown payment of state A and B Fudenberg et al. (2018).
-We ask: Could risk-aversion alone lead to time dependent stopping rules?

```
Goals of this Paper
```

- Analyze the richness of optimal boundaries under risk averse utility functions.
- Provide a method which is informative of the optimal boundaries.

Static Problem

Static Setup

There is an underlying state $\omega \in\{A, B\}$. Unobserved by the agent; agent has a prior $P(\omega=A)=p_{0}$.
Agent chooses among two alternatives a or b.
Receives a bonus x if choice matches state, no bonus otherwise.
Agent has initial wealth w.

Agent chooses how much information to acquire.
Information:

$$
S_{t}=\left\{\begin{array}{ccc}
\tilde{\mu} t+\rho W_{t} & \text { if } \quad \omega=A \\
-\tilde{\mu} t+\rho W_{t} & \text { if } \quad \omega=B
\end{array}\right.
$$

Timing: Choose $t \rightarrow$ given information choose a or b.
Agent pays cost $c \cdot t$ for information collection.

$$
u(t, a \mid \omega=A)=u(w+x-c t) \quad u(t, a \mid \omega=B)=u(w-c t)
$$

$u(\cdot)$ - some concave utility function.

Define $\mu=\frac{2 \tilde{\mu}^{2}}{\rho^{2}}$. Set $p_{0}=1 / 2$ for ease of exposition.

$$
\begin{aligned}
& \max _{t} \mathbb{E}\left[\frac{1}{2}\left(\mathbb{P}\left(\frac{e^{S_{t}(\mu)}}{1+e^{S_{t}(\mu)}} \geq \frac{1}{1+e^{S_{t}(\mu)}}\right) u(w+x-c t)+\mathbb{P}\left(\frac{e^{S_{t}(\mu)}}{1+e^{S_{t}(\mu)}}<\frac{1}{1+e^{S_{t}(\mu)}}\right) u(w-c t)\right)\right. \\
+ & \left.\frac{1}{2}\left(\mathbb{P}\left(\frac{e^{S_{t}(-\mu)}}{1+e^{S_{t}(-\mu)}}<\frac{1}{1+e^{S_{t}(-\mu)}}\right) u(w+x-c t)+\mathbb{P}\left(\frac{e^{S_{t}(-\mu)}}{1+e^{S_{t}(-\mu)}} \geq \frac{1}{1+e^{S_{t}(-\mu)}}\right) u(w-c t)\right)\right]
\end{aligned}
$$

Static Information Acquisition Problem

$$
\begin{aligned}
& \max _{t} p(t) u(w+x-c t)+(1-p(t)) u(w-c t) \\
& p(t)=\frac{1}{2}\left(\operatorname{erf}\left(\frac{\sqrt{\mu t}}{2}\right)+1\right)
\end{aligned}
$$

f.o.c

$$
\frac{u(w+x-c t)-u(w-c t)}{p(t) u^{\prime}(w+x-c t)+(1-p(t)) u^{\prime}(w-c t)} p^{\prime}(t)=c
$$

Proposition
t^{*} is independent of $w \Longleftrightarrow u$ is CARA.

CARA

$$
u(\cdot)=\frac{1-e^{-\alpha(\cdot)}}{\alpha}
$$

$$
\frac{\int_{w-c t}^{w+x-c t} u^{\prime}(s) d s}{p(t) u^{\prime}(w+x-c t)+(1-p(t)) u^{\prime}(w-c t)} p^{\prime}(t)=\frac{e^{2 \alpha x}-1}{2 \alpha\left(p(t)-(p(t)-1) e^{2 \alpha x}\right)} p^{\prime}(t)=c
$$

$t^{*}(\alpha)$ is implicitly defined by

$$
\frac{\mu e^{-\frac{\mu t^{*}}{4}}}{4 \sqrt{\pi \mu t^{*}}\left(\frac{1}{2} \alpha \operatorname{erfc}\left(\frac{\sqrt{\mu t^{*}}}{2}\right)+\frac{\alpha}{e^{\alpha x}-1}\right)}=c
$$

t^{*} is a function of only α, x, c and μ. From the implicit function theorem $\exists \tilde{\alpha}>0$ such that

$$
\frac{\partial t^{*}}{\partial \alpha}>0 \quad \text { if } \alpha<\tilde{\alpha} \quad \frac{\partial t^{*}}{\partial \alpha} \leq 0 \quad \text { if } \alpha \geq \tilde{\alpha}
$$

CARA Optimal Boundary

$$
u(\cdot)=\sum_{i} \gamma_{i} \operatorname{CARA}_{\alpha_{i}}(\cdot) \quad \gamma_{i} \geq 0 \quad \sum_{i} \gamma_{i}=1
$$

Without loss assume $\alpha_{i} \leq \alpha_{i+1}$. Let t_{i}^{*} be the \arg max under $\operatorname{CARA}_{\alpha_{i}}(\cdot)$.

Proposition

$$
\begin{gathered}
\forall w \min _{i} t_{i}^{*} \leq t^{*}(w) \leq \max _{i} t_{i}^{*} \\
\lim _{w \rightarrow \infty} t^{*}(w)=t_{1}^{*} \quad \lim _{w \rightarrow-\infty} t^{*}(w)=t_{l}^{*} \\
t^{*}(w)\left\{\begin{array}{lr}
\text { may be quasiconcave } & \text { if } \min _{i} \alpha_{i} \leq \tilde{\alpha} \leq \max _{i} \alpha_{i} \\
\text { monotonically converges } & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Static mixed-CARA

$$
u(\cdot)=\sum_{i} \gamma_{i} \operatorname{CARA}_{\alpha_{i}}(\cdot) \quad \gamma_{i} \geq 0 \quad \sum_{i} \gamma_{i}=1
$$

Static mixed-CARA

$$
u(\cdot)=\sum_{i} \gamma_{i} \operatorname{CARA}_{\alpha_{i}}(\cdot) \quad \gamma_{i} \geq 0 \quad \sum_{i} \gamma_{i}=1
$$

Static mixed-CARA

$$
u(\cdot)=\sum_{i} \gamma_{i} \operatorname{CARA}_{\alpha_{i}}(\cdot) \quad \gamma_{i} \geq 0 \quad \sum_{i} \gamma_{i}=1
$$

Dynamic Problem

Dynamic Setup

There is an underlying state $\omega \in\{A, B\}$. Unobserved by the agent; agent has a prior. Agent chooses among two alternatives a or b.
Receives a bonus x if choice matches state, no bonus otherwise.
Agent has initial wealth w.

Information arrives continuously as long as an alternative has not been chosen. Information: Wiener process $d S$ with drift $\tilde{\mu}(-\tilde{\mu})$ and variance ρ^{2} if the state is $A(B)$. Agent pays flow cost c for information collection.

$$
u(a, t \mid \omega=A)=u(w+x-c t) \quad u(a \mid \omega=B)=u(w-c t)
$$

DDM CARA

$$
u(\cdot)=\operatorname{CARA}_{\alpha}(\cdot)
$$

Ito's lemma leads to

$$
\frac{\partial V}{\partial t}=\frac{\partial V}{\partial \theta} \mu \frac{e^{\theta}-1}{e^{\theta}+1}+\mu \frac{\partial V}{\partial \theta^{2}} .
$$

Value matching (boundary condition)

$$
V\left(z^{*}(t), t\right)=p\left(z^{*}(t)\right) \frac{1-e^{-\alpha(w+x-c t)}}{\alpha}+\left(1-p\left(z^{*}(t)\right)\right) \frac{1-e^{-\alpha(w-c t)}}{\alpha}
$$

+Smooth pasting condition
+Initial value condition

DDM CARA

$$
V(\theta, t \mid z)=\frac{1}{\alpha}-\frac{e^{\alpha c t}\left(\operatorname{sech}\left(\frac{\theta}{2}\right) e^{-\frac{1}{2} \alpha(2 w+x)} \cosh \left(\frac{1}{2}(z-\alpha x)\right) \cosh \left(\frac{1}{2} \theta \sqrt{1-\frac{4 \alpha c}{\mu}}\right) \operatorname{sech}\left(\frac{1}{2} z \sqrt{1-\frac{4 \alpha c}{\mu}}\right)\right)}{\alpha}
$$

Let $z^{*}(\alpha)$ be the value that sets $\frac{\partial v(z \mid \theta)}{\partial z}=0$.

$$
\sinh \left(\frac{1}{2}\left(z^{*}-\alpha x\right)\right)-\sqrt{1-\frac{4 \alpha c}{\mu}} \cosh \left(\frac{1}{2}\left(z^{*}-\alpha x\right)\right) \tanh \left(\frac{1}{2} z^{*} \sqrt{1-\frac{4 \alpha c}{\mu}}\right)=0
$$

z^{*} is a function of only α, x, c and μ.
From the implicit function theorem

$$
\frac{\partial z^{*}}{\partial \alpha}>0 \quad \text { if } \alpha<\tilde{\alpha} \quad \frac{\partial z^{*}}{\partial \alpha} \leq 0 \quad \text { if } \alpha \geq \tilde{\alpha}
$$

CARA Optimal Boundary

DDM mixed-CARA

$$
u(\cdot)=\sum_{i} \gamma_{i} \operatorname{CARA}_{\alpha_{i}}(\cdot) \quad \gamma_{i} \geq 0 \quad \sum_{i} \gamma_{i}=1
$$

Without loss assume $\alpha_{i} \leq \alpha_{i+1}$. Let $V_{i}(z, t)$ be the value function for α_{i}

$$
\frac{\partial V}{\partial t}=\frac{\partial V}{\partial \theta} \mu \frac{e^{\theta}-1}{e^{\theta}+1}+\mu \frac{\partial V}{\partial \theta^{2}}
$$

Value matching (boundary condition)

$$
V\left(z^{*}(t), t\right)=p\left(z^{*}(t)\right) \sum_{i=1}^{n} \gamma_{i} \frac{1-e^{-\alpha_{i}(w+x-c t)}}{\alpha}+\left(1-p\left(z^{*}(t)\right)\right) \sum_{i=1}^{n} \gamma_{i} \frac{1-e^{-\alpha_{i}(w-c t)}}{\alpha}
$$

+Smooth pasting condition
+Initial value condition

mixed-CARA Optimal Boundary

mixed-CARA Optimal Boundary

Proposition

$$
\begin{gathered}
\min _{i} z_{i}^{*} \leq z^{*}(t) \leq \max _{i} z_{i}^{*} \\
\lim _{w \rightarrow \infty} z^{*}(w)=z_{1}^{*} \quad \lim _{w \rightarrow-\infty} z^{*}(w)=z_{i}^{*}
\end{gathered}
$$

Possible Desirable Features of this Setup

Paying a fixed price for information of fixed precision Example, buying a $3 \$$ news paper.

What if we pull ct out of $u(\cdot)$: curvature for w and x, but pay for information in utiles.
Then, let $\tilde{u}=u(w)$, re-normalize payments $\tilde{x}=u(w+x)-u(w)$.
Win: $\tilde{u}+\tilde{x} \quad$ Lose: \tilde{u}
The problem reduces to the linear problem \Longrightarrow time-independent boundaries.

From mixed-CARA to any concave $u(\cdot)$

- Approximate continuous, concave and increasing functions with linear combinations of CARAs.

Next Steps

Approximating Concave-Increasing functions

Let $X \subset \mathbb{R}$ be a compact set, and \mathcal{F} be the space of all continuous, increasing and concave functions $f: X \rightarrow \mathbb{R}$. Define:

$$
C=\left\{f \in \mathcal{F}: f(x)=-\sum_{i=1}^{N} \beta_{i} e^{-\alpha_{i} x},\left(\alpha_{i}, \beta_{i}\right) \in \mathbb{R}_{+} \times \mathbb{R}\right\}
$$

Apply Stone-Weierstrass

Lemma

\mathcal{C} is dense in \mathcal{F} in the uniform norm.

Proof: An application of Stone-Weierstrass.

- Approximate continuous, concave and increasing functions with linear combinations of CARAs. \checkmark
- Prove value functions can also be approximated (operator continuity - Shiryaev).

Approximating Value Functions.

Following Shiryaev (2008), define:

$$
\operatorname{Tu}(\theta, t)=\mathbb{E}_{\pi} u\left(\theta_{1}, t+1\right) \quad Q u(\theta, t)=\max \{u(\theta, t), T u(\theta, t)\} \quad V_{u}(\theta, t)=\lim _{n \rightarrow \infty} Q^{n} u(\theta, t)
$$

Lemma

For any compact set X and $\varepsilon>0$, let $\|u-w\|_{x}<\varepsilon$, then, $\left\|V_{u}-V_{w}\right\|_{x}<\varepsilon$.

- Approximate continuous, concave and increasing functions with linear combinations of CARAs. \checkmark
- Prove value functions can also be approximated (operator continuity - Shiryaev).
- Show compactness is not a restriction (Shiryaev).
- Approximate continuous, concave and increasing functions with linear combinations of CARAs. \checkmark
- Prove value functions can also be approximated (operator continuity - Shiryaev).
- Show compactness is not a restriction (Shiryaev). \checkmark
- Derive properties of boundaries for mixes of linear combinations of CARAs.
- Concave $u \Longrightarrow$ rich set of boundaries.
- Structure for mixed-CARA.
- Soon: structure for any u.

References

Brown, M., Flinn, C. J., and Schotter, A. (2011). Real-time search in the laboratory and the market. American Economic Review, 101(2):948-74.
Fried, L. S. and Peterson, C. R. (1969). Information seeking: Optional versus fixed stopping. Journal of Experimental Psychology, 80(3p1):525.
Fudenberg, D., Strack, P., and Strzalecki, T. (2018). Speed, accuracy, and the optimal timing of choices. American Economic Review, 108(12):3651-3684. Luce, R. D. et al. (1986). Response times: Their role in inferring elementary mental organization. Oxford University Press on Demand.

Ratcliff, R. and McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20(4):873-922.
Ratcliff, R. and Smith, P. L. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review, 111(2):333.
Reshidi, P., Lizzeri, A., Yariv, L., Chan, J. H., and Suen, W. (2022). Individual and collective information acquisition: An experimental study. Technical report, National Bureau of Economic Research. Swensson, R. G. (1972). The elusive tradeoff: Speed vs accuracy in visual discrimination tasks. Perception \& Psychophysics, 12(1):16-32.

